国立浙江大学论坛

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 79711|回复: 88
打印 上一主题 下一主题

南开2019年代表性论文

[复制链接]

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
跳转到指定楼层
楼主
发表于 2019-2-12 09:13:56 | 只看该作者 回帖奖励 |正序浏览 |阅读模式
本帖最后由 NKU 于 2020-1-1 19:39 编辑

    以下共305篇(2019.12.30,不含并列一作等)

备注:
  (1)统计IF>10+PRL/PNAS的Article、Review,非特别注明则南开为第一作者+通讯作者单位;
  (2)以出版商在线发表时间(2019年)为标准,IF采用2019年发布的JCR。
  (3)南开代表性论文前传,这是传送门:http://bbs1.netbig.com/thread-2842965-1-1.html
  (4)2019年10月17日,南开建校100周年


Nature/Science/Cell/PNAS系列
    Science
    化学院/元素所  周其林、朱守非  https://science.sciencemag.org/content/366/6468/990
    化学院/药学院  刘遵峰  https://science.sciencemag.org/content/366/6462/216
    生科院  曹雪涛  https://science.sciencemag.org/content/365/6454/eaa v0758

    Nature Electronics
    化学院  陈永胜  https://www.nature.com/articles/s41928-019-0315-1
    Nature Chemistry
    化学院  陈军  https://www.nature.com/articles/s41557-019-0298-6    (通讯作者)

    Nature Catalysis
    元素所  陈弓、何刚  https://www.nature.com/articles/s41929-019-0324-5
    环科院  周启星  https://www.nature.com/articles/s41929-019-0338-z
    Nature Reviews Immunology
    生科院  
曹雪涛、张迁  https://www.nature.com/articles/s41577-019-0151-6
    Nature Communications
    化学院  陈永胜  https://www.nature.com/articles/s41467-019-10984-6    (通讯作者)
    元素所  朱守非、彭谦  https://www.nature.com/articles/s41467-019-11245-2    (通讯作者)
    元素所  彭谦  https://www.nature.com/articles/s41467-019-10357-z    (并列一作,不计入总数)
    元素所  王小野  https://www.nature.com/articles/s41467-019-13428-3    (通讯作者)
    元素所  薛小松、赵东兵  https://www.nature.com/articles/s41467-019-12949-1
    化学院  袁明鉴  https://www.nature.com/articles/s41467-019-09794-7
    化学院  张新星  https://www.nature.com/articles/s41467-019-09154-5
    化学院  师唯  https://www.nature.com/articles/s41467-019-13090-9
    化学院/药学院  刘遵峰  https://www.nature.com/articles/s41467-019-13257-4
    化学院  郭东升  https://www.nature.com/articles/s41467-019-13775-1
    化学院  Qian Zhao  https://www.nature.com/articles/s41467-019-10856-z    (第一作者)
    化学院  郭天瑛  
https://www.nature.com/articles/s41467-019-11190-0    (通讯作者)
    物理学院  胡振芃  https://www.nature.com/articles/s41467-019-11789-3    (通讯作者+并列一作)
    物理学院  张立新  
https://www.nature.com/articles/s41467-019-09269-9    (通讯作者+并列一作)
    材料学院  徐加良  
https://www.nature.com/articles/s41467-019-12601-y    (通讯作者)
    电光学院  李跃龙  https://www.nature.com/articles/s41467-019-13389-7    (通讯作者+并列一作)
    生科院  马彪、朱玉山、陈佺  
https://www.nature.com/articles/s41467-019-08618-y
    生科院  孔德领、王恺  
https://www.nature.com/articles/s41467-019-12545-3
    生科院  刘斌  https://www.nature.com/articles/s41467-018-08197-4    (通讯作者)
    生科院  丁丹  
https://www.nature.com/articles/s41467-019-08722-z    (通讯作者+并列一作)
    生科院  胡俊杰  https://www.nature.com/articles/s41467-019-11860-z    (通讯作者+并列一作)
    生科院  Lin Cao  https://www.nature.com/articles/s41467-019-11668-x    (并列一作,不计入总数)
    泰达生物  Xiaolong Shao  
https://www.nature.com/articles/s41467-019-10778-w    (并列一作,不计入总数)
    Science Advances
    化学院  陈永胜 https://advances.sciencemag.org/content/5/4/eaa v2589
    元素所  汪清民  https://advances.sciencemag.org/content/5/10/eaax9955
    物理学院  李勇男  https://advances.sciencemag.org/content/5/6/eaat9206    (通讯作者)
    生科院  石建党  
https://advances.sciencemag.org/content/5/7/eaaw6710
    Chem
   
元素所  刘育  https://www.sciencedirect.com/science/article/pii/S2451929418305874    (通讯作者)
    化学院  陈军  
https://www.sciencedirect.com/science/article/pii/S2451929419302384
    化学院  李福军、雷凯翔  https://www.sciencedirect.com/science/article/abs/pii/S2451929419304620
    化学院  师唯  https://www.sciencedirect.com/science/article/pii/S2451929419301688
    生科院  丁丹  https://www.sciencedirect.com/science/article/abs/pii/S2451929419303249    (通讯作者+并列一作)
    PNAS
    药学院  杨娜  https://www.pnas.org/content/early/2019/09/11/1904672116



自然科学(Physical Sciences)
物理
    PRL

    物理学院  许京军、陈志刚  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.123903
    物理学院  许京军、陈志刚,胡毅  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.234101
    物理学院  陈树琪、程化  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.104302
    物理学院  Hang Ren  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.140405    (第一作者)
    物理学院  薄方  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.173903    (通讯作者)
    物理学院  陈璟  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.203903    (通讯作者)
    Light:Science&Applications
    电光学院  向东、徐炳乾  
https://www.nature.com/articles/s41377-019-0144-z
化学
    JACS
    元素所  
刘育  https://pubs.acs.org/doi/10.1021/jacs.8b13675
    材料学院  卜显和、李伟  https://pubs.acs.org/doi/10.1021/jacs.9b01874
    材料学院  卜显和、胡同亮  https://pubs.acs.org/doi/10.1021/jacs.9b07807
    元素所  周其林、肖力军  https://pubs.acs.org/doi/10.1021/jacs.8b13251
    元素所  朱守非  https://pubs.acs.org/doi/abs/10.1021/jacs.9b02127
    元素所  陈弓、何刚  https://pubs.acs.org/doi/10.1021/jacs.9b02811
    元素所  陈弓  https://pubs.acs.org/doi/10.1021/jacs.9b04221
    元素所  陈弓  https://pubs.acs.org/doi/10.1021/jacs.9b09127    (通讯作者)
    元素所  王晓晨  
https://pubs.acs.org/doi/10.1021/jacs.9b11909
    元素所  薛小松  https://pubs.acs.org/doi/10.1021/jacs.9b08243
    元素所  薛小松  https://pubs.acs.org/doi/10.1021/jacs.8b12674    (第一作者)
    元素所  徐效华、金钟  https://pubs.acs.org/doi/pdf/10.1021/jacs.8b13403
    元素所  资伟伟  https://pubs.acs.org/doi/pdf/10.1021/jacs.9b07600
    元素所  崔春明  https://pubs.acs.org/doi/10.1021/jacs.9b11913
    化学院  张振杰  https://pubs.acs.org/doi/10.1021/jacs.9b04319
    化学院/药学院  张振杰、陈瑶  https://pubs.acs.org/doi/10.1021/jacs.9b05155
    化学院  邵学广、蔡文生  https://pubs.acs.org/doi/10.1021/jacs.9b08477
    化学院/生科院  丁丹、史林启  https://pubs.acs.org/doi/10.1021/jacs.8b13889    (通讯作者+并列一作)
    化学院  尹学博  https://pubs.acs.org/doi/10.1021/jacs.9b06755
    材料学院  李兰冬  https://pubs.acs.org/doi/10.1021/jacs.9b03361
    网安学院  Andreas Terfort  https://pubs.acs.org/doi/10.1021/jacs.9b08169    (通讯作者)
    药学院  程剑松  https://pubs.acs.org/doi/abs/10.1021/jacs.9b00044    (并列一作,不计入总数)
    ANGEWANDTE
    元素所  刘育  
https://onlinelibrary.wiley.com/doi/10.1002/anie.201901882
    元素所  刘育  https://onlinelibrary.wiley.com/doi/10.1002/anie.201903243
    材料学院  卜显和  https://onlinelibrary.wiley.com/doi/10.1002/anie.201903817
    材料学院  卜显和、李朝阳  https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201900789
    材料学院  卜显和、许健  https://onlinelibrary.wiley.com/doi/10.1002/anie.201900190
    材料学院  卜显和、常泽  https://onlinelibrary.wiley.com/doi/10.1002/anie.201906278
    元素所  王晓晨  https://onlinelibrary.wiley.com/doi/10.1002/anie.201900907
    元素所  王晓晨  https://onlinelibrary.wiley.com/doi/10.1002/anie.201907943
    元素所  崔春明、李剑峰  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201913773
    元素所  崔春明  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201903418    (通讯作者)
    元素所  梁广鑫  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902043
    元素所  汤平平  https://onlinelibrary.wiley.com/doi/10.1002/anie.201901447
    元素所  彭谦  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902464    (通讯作者+并列一作)
    元素所  叶萌春、李正名  https://onlinelibrary.wiley.com/doi/10.1002/ange.201902607
    化学院  牛志强  https://onlinelibrary.wiley.com/doi/10.1002/anie.201814653
    化学院  牛志强  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902679
    化学院  牛志强  https://onlinelibrary.wiley.com/doi/10.1002/anie.201903941
    化学院  张振杰  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904312
    化学院  张振杰  https://onlinelibrary.wiley.com/doi/10.1002/anie.201913802
    化学院  张振杰  https://onlinelibrary.wiley.com/doi/10.1002/anie.201910749
    化学院  张新星  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902815
    化学院  张新星  https://onlinelibrary.wiley.com/doi/10.1002/anie.201906279
    化学院  张新星  https://onlinelibrary.wiley.com/doi/10.1002/anie.201907089    (通讯作者)
    化学院  赵斌  
https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201901786
    化学院  赵斌  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201906306
    化学院  赵斌  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201907557
    化学院  李福军  https://onlinelibrary.wiley.com/doi/10.1002/anie.201905954
    化学院  李福军  https://onlinelibrary.wiley.com/doi/10.1002/anie.201911228
    化学院  郭东升  https://onlinelibrary.wiley.com/doi/10.1002/anie.201813397
    化学院  程方益  https://onlinelibrary.wiley.com/doi/10.1002/anie.201914335
    化学院  陶占良  https://onlinelibrary.wiley.com/doi/10.1002/anie.201908913
    化学院  谢微  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902825
    化学院  王鸿  https://onlinelibrary.wiley.com/doi/10.1002/anie.201907752
    化学院  陈朗星  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201900658
    化学院  赵汉英、刘丽  https://onlinelibrary.wiley.com/doi/10.1002/anie.201903798
    化学院  张望清  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201904991
    化学院  肖乐辉  https://onlinelibrary.wiley.com/doi/10.1002/ange.201902987    (通讯作者)
    化学院/物理学院  袁明鉴、杨帆  https://onlinelibrary.wiley.com/doi/10.1002/anie.201911281
    化学院  陈军  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201902185
    药学院  陈悦、王良、丁亚辉  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904096
    药学院  李昌华  https://onlinelibrary.wiley.com/doi/10.1002/anie.201907510
    环科院  展思辉  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904571
    环科院  展思辉  https://onlinelibrary.wiley.com/doi/10.1002/anie.201901771
    环科院  展思辉  https://onlinelibrary.wiley.com/doi/10.1002/anie.201914001
    材料学院  孙忠明  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904109
    材料学院  杜亚平  https://onlinelibrary.wiley.com/doi/10.1002/anie.201812972    (通讯作者)
    材料学院  
杜亚平  https://onlinelibrary.wiley.com/doi/10.1002/anie.201905852    (通讯作者)
    材料学院  周震  
https://onlinelibrary.wiley.com/doi/10.1002/anie.201911338    (通讯作者)
    材料学院  Yamashita  
https://onlinelibrary.wiley.com/doi/10.1002/anie.201910523    (通讯作者)
    物理学院  Lifu Zhang  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904614    (并列一作,不计入总数)
    ACS Catalysis

    元素所  朱守非  https://pubs.acs.org/doi/10.1021/acscatal.9b01187
    元素所  朱守非、周其林  https://pubs.acs.org/doi/10.1021/acscatal.9b01502
    元素所  陈弓、何刚、彭谦  https://pubs.acs.org/doi/10.1021/acscatal.9b01350
    元素所  陈弓、何刚  https://pubs.acs.org/doi/10.1021/acscatal.9b04768
    元素所  陈弓、何刚、王浩  https://pubs.acs.org/doi/10.1021/acscatal.9b04285
    元素所  赵东兵  https://pubs.acs.org/doi/10.1021/acscatal.9b00771
    元素所  关冰涛  https://pubs.acs.org/doi/10.1021/acscatal.9b02899
    化学院  张振杰、程鹏  https://pubs.acs.org/doi/10.1021/acscatal.9b01783
    化学院  王贵昌  https://pubs.acs.org/doi/abs/10.1021/acscatal.8b04427
    化学院  王贵昌  https://pubs.acs.org/doi/abs/10.1021/acscatal.8b03765
    化学院/环科院  王贵昌、Kai Yu  https://pubs.acs.org/doi/10.1021/acscatal.9b02115
    材料学院  李兰冬、戴卫理  https://pubs.acs.org/doi/10.1021/acscatal.9b00641
    材料学院  李兰冬、戴卫理  https://pubs.acs.org/doi/10.1021/acscatal.9b02850
    电光学院  陈海军  https://pubs.acs.org/doi/10.1021/acscatal.9b02975
    物理学院  Lifu Zhang  https://pubs.acs.org/doi/abs/10.1021/acscatal.8b05061    (并列一作,不计入总数)
    ACS Central Science
    化学院/药学院  张振杰、陈瑶  https://pubs.acs.org/doi/10.1021/acscentsci.9b00212
    Acc. Chem. Res.
    元素所  苏循成  https://pubs.acs.org/doi/10.1021/acs.accounts.9b00132
    元素所  王小野  https://pubs.acs.org/doi/10.1021/acs.accounts.9b00322
    元素所  薛小松  https://pubs.acs.org/doi/10.1021/acs.accounts.9b00393
    化学院  蔡文生  https://pubs.acs.org/doi/10.1021/acs.accounts.9b00473
    Chem. Soc. Rev.
    化学院  史林启  
https://pubs.rsc.org/en/content/articlelanding/2019/cs/c7cs00807d
    Coordination Chemistry Reviews
    材料学院  卜显和、胡同亮  https://www.sciencedirect.com/science/article/abs/pii/S001085451830599X

    材料学院  卜显和  https://www.sciencedirect.com/science/article/abs/pii/S001085451830609X
    材料学院  卜显和  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306143    (通讯作者)
    材料学院  杜亚平  https://www.sciencedirect.com/science/article/pii/S0010854519300839
    材料学院  李伟  https://www.sciencedirect.com/science/article/abs/pii/S0010854519300219
    化学院  郭东升、孙宏伟  https://www.sciencedirect.com/science/article/abs/pii/S001085451830554X
    化学院  师唯、程鹏  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306313
    化学院  张振杰  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306192
    化学院  赵斌  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306131
    元素所  崔春明、李建峰  https://www.sciencedirect.com/science/article/abs/pii/S0010854518305186

    药学院  陈瑶  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306155

    Nat. Prod. Rep.
    元素所  金钟  
https://pubs.rsc.org/en/content/articlelanding/2019/np/c8np00055g
材料
    Advanced Materials
(100th Anniversary of Nankai University)
    元素所  刘育  
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806158
    材料学院  卜显和、胡同亮  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806445
    材料学院  卜显和、徐加良  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806736
    化学院  陈永胜  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805843
    化学院  程方益  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806326
    化学院  赵斌  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806163
    化学院  焦丽芳  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806304
    化学院  程鹏、师唯  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805871
    化学院  刘阳、史林启  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805945
    化学院  张会旗  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806328
    化学院  王维  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805863
    化学院  郭玮炜  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806538
    物理学院  许京军、蔡卫、任梦昕  https://www.onlinelibrary.wiley.com/doi/10.1002/adma.201806317
    物理学院  许京军、孔勇发  https://www.onlinelibrary.wiley.com/doi/10.1002/adma.201806452
    物理学院  陈树琪  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805912
    电光学院  张晓丹、罗景山  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806474
    环科院  展思辉  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806843
    材料学院  朱剑  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806480
    材料学院  杜亚平、严纯华  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806461
    材料学院  梁嘉杰  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805864
    材料学院  高学平、李国然  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806478
    生科院  杨志谋  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805798
    生科院  丁丹  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806331
    生科院  赵强  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805818
    Advanced Materials
    化学院  陈永胜、万相见 https://onlinelibrary.wiley.com/doi/10.1002/adma.201804723
    化学院  陈永胜、刘永胜  https://onlinelibrary.wiley.com/doi/10.1002/adma.201901242
    化学院  陈军  https://onlinelibrary.wiley.com/doi/10.1002/adma.201901808
    化学院  刘阳、史林启  https://onlinelibrary.wiley.com/doi/10.1002/adma.201902542
    化学院  刘阳、史林启  https://onlinelibrary.wiley.com/doi/10.1002/adma.201905751
    化学院  牛志强  https://onlinelibrary.wiley.com/doi/10.1002/adma.201903955
    物理学院  陈树琪 https://onlinelibrary.wiley.com/doi/10.1002/adma.201802458
    物理学院  陈树琪  https://onlinelibrary.wiley.com/doi/10.1002/adma.201901729
    生科院  丁丹  https://onlinelibrary.wiley.com/doi/10.1002/adma.201904914
    生科院  丁丹 https://onlinelibrary.wiley.com/doi/10.1002/adma.201807222    (通讯作者+并列一作)
    电光学院  王卫超 https://onlinelibrary.wiley.com/doi/10.1002/adma.201804769    (通讯作者)
    材料学院  徐加良
https://onlinelibrary.wiley.com/doi/10.1002/adma.201807981    (通讯作者)
    Advanced Science
    化学院  史林启、余志林 https://onlinelibrary.wiley.com/doi/10.1002/advs.201802043
    化学院/生科院  史林启  冯喜增  https://onlinelibrary.wiley.com/doi/10.1002/advs.201901844
    化学院 王鸿  https://onlinelibrary.wiley.com/doi/10.1002/advs.201902170
    物理学院  潘雷霆  https://onlinelibrary.wiley.com/doi/10.1002/advs.201900865    (第一作者)
    材料学院  高学平  
https://onlinelibrary.wiley.com/doi/10.1002/advs.201900620
    材料学院  李兰冬  https://onlinelibrary.wiley.com/doi/10.1002/advs.201900299
    材料学院  梁嘉杰  https://onlinelibrary.wiley.com/doi/10.1002/advs.201900943    (通讯作者)
    材料学院  楼兰兰  
https://onlinelibrary.wiley.com/doi/10.1002/advs.201901970
    电光学院  王卫超  https://onlinelibrary.wiley.com/doi/10.1002/advs.201901614
    Advanced Energy Materials
    化学院  陈永胜  
https://onlinelibrary.wiley.com/doi/10.1002/aenm.201803541
    化学院  陈永胜、万相见  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201901024
    化学院  万相见  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201902688
    化学院  李福军  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201900022
    化学院  焦丽芳  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201902104
    化学院  焦丽芳  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201902703
    材料学院  梁嘉杰  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201803987
    材料学院 高学平  https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201803477
    化学院  陶占良 https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201803210    (通讯作者)
    Advanced Functional Materials
    化学院  袁明鉴  
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201807696
    化学院  陈军  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201904843    (通讯作者)
    药学院  
刘遵峰  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808241
    药学院  刘遵峰  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808995
    材料学院  高学平  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201901051
    材料学院  高学平、刘胜  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808756
    材料学院  周震  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201807895    (通讯作者+并列一作)
    材料学院  周震  https://www.onlinelibrary.wiley.com/doi/10.1002/adfm.201908285    (通讯作者)
    电光学院  程雅慧  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808747

    电光学院  王卫超  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201906890    (通讯作者)
    生科院  欧来良  
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808961
    生科院  丁丹  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201902673    (通讯作者)
    生科院  丁丹  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201908125
    Nano Letter
    物理学院  陈树琪  
https://pubs.acs.org/doi/10.1021/acs.nanolett.8b04923
    化学院  袁直  https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b04645
    化学院  刘阳、史林启  https://pubs.acs.org/doi/10.1021/acs.nanolett.9b02501
    化学院/生科院 余志林、苏循成、丁丹  https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b03136
    生科院  王恺、高洁、杨志谋  https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b04406
    ACS Nano
    材料学院  梁嘉杰  
https://pubs.acs.org/doi/10.1021/acsnano.9b03161
    化学院  刘定斌  https://pubs.acs.org/doi/10.1021/acsnano.8b07054
    化学院  肖乐辉  https://pubs.acs.org/doi/10.1021/acsnano.9b05354
    化学院  谢微、赵东兵  https://pubs.acs.org/doi/10.1021/acsnano.9b05523
    医学院/生科院  李宗金、王悦冰、丁丹  https://pubs.acs.org.cn/doi/abs/10.1021/acsnano.8b09776
    材料学院  徐加良  https://pubs.acs.org/doi/10.1021/acsnano.8b06308    (通讯作者+并列一作)
    ACS Energy Letters
    电光学院  张晓丹  https://pubs.acs.org/doi/10.1021/acsenergylett.9b02112
    化学院  Qian Zhang  https://pubs.acs.org/doi/10.1021/acsenergylett.9b02395    (第一作者)
    JOURNAL OF MATERIALS CHEMISTRY A
    化学院  陈永胜  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12064a
    化学院  陈永胜  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta10786f
    化学院  陈永胜  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta07760j    (通讯作者)
    化学院  陈军  
https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta06817a
    化学院  陈军  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta02803j
    化学院  程方益  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta09873a
    化学院  牛志强  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta02990g
    化学院  焦丽芳  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta09643d    (通讯作者)
    化学院  陶占良  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta00474b
    化学院  郑文君  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta11827f
    材料学院  周震  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta03628h
    材料学院  周震  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta01882d
    材料学院  周震  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta08025b
    材料学院  周震、Menggai Jiao  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta06286f
    材料学院  李朝阳  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta08077e
    材料学院  袁忠勇  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta03300a
    材料学院  高学平  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta04555d
    材料学院  杜亚平  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta07424d    (通讯作者)
    电光学院  王卫超  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta03529j
    电光学院  杨大驰  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta01013k
    电光学院  杨大驰  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta00854c
    环科院  李克勋、Cuicui Lv  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12433g
    环科院  周明华  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta07491k
    Small
    材料学院  卜显和  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201903410
    材料学院  卜显和、常泽  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201900426
    材料学院  卜显和、朱剑  https://onlinelibrary.wiley.com/doi/10.1002/smll.201906086
    化学院  尹学博  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201901803
    化学院  马建功、程鹏  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201804849
    化学院  焦丽芳  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201901775    (通讯作者)
    化学院  侴术雷  https://onlinelibrary.wiley.com/doi/10.1002/smll.201902767
    药学院  刘遵峰  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201804805
    环科院  陈威、刘璐  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201900020
    电光学院  徐文涛  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201900695
    电光学院  王晓雷  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201902890    (通讯作者)
    电光学院  王卫超  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201902373    (通讯作者)
    Joule
    电光学院  罗景山  
https://www.sciencedirect.com/science/article/abs/pii/S2542435119304842    (通讯作者)
    Renewable and Sustainable Energy Reviews

    环科院  周明华、Tingyue Gu  https://www.sciencedirect.com/science/article/pii/S1364032118308220
    Biomaterials
    生科院/医学院  赵强、李宗金  
https://www.sciencedirect.com/science/article/pii/S014296121930047X
    生科院  孔德领  https://www.sciencedirect.com/science/article/pii/S0142961219305873
    生科院  孔德领、黄兴禄  https://www.sciencedirect.com/science/article/pii/S0142961219307343
    环科院  胡献刚  https://www.sciencedirect.com/science/article/pii/S0142961219301176
    环科院  胡献刚  https://www.sciencedirect.com/science/article/pii/S0142961219308701
    材料学院  杜亚平  https://www.sciencedirect.com/science/article/pii/S0142961219307690    (通讯作者)
    Chem. Mater.
    化学院  陈永胜  https://pubs.acs.org/doi/10.1021/acs.chemmater.8b04087
    材料学院  杜亚平  https://pubs.acs.org/doi/10.1021/acs.chemmater.9b02857    (通讯作者)
    Nano Energy
    材料学院  卜显和、王丹红  
https://www.sciencedirect.com/science/article/pii/S2211285519304367
    化学院  陈永胜  https://www.sciencedirect.com/science/article/pii/S2211285519305932
    化学院  陈永胜  https://www.sciencedirect.com/science/article/pii/S2211285519309231    (通讯作者)
    材料学院  梁嘉杰  https://www.sciencedirect.com/science/article/pii/S2211285519306056
    材料学院  杜亚平  https://www.sciencedirect.com/science/article/pii/S2211285519305130    (通讯作者)
    化学院  焦丽芳  
https://www.sciencedirect.com/science/article/pii/S221128551930521X
    化学院  牛志强  https://www.sciencedirect.com/science/article/pii/S221128551930919X    (通讯作者)
    电光学院  张晓丹  
https://www.sciencedirect.com/science/article/pii/S2211285519305257    (通讯作者)
    电光学院  张晓丹  
https://www.sciencedirect.com/science/article/pii/S221128551930254X    (通讯作者)
环境
    Applied Catalysis B: Environmental
    环科院  周明华  
https://www.sciencedirect.com/science/article/pii/S0926337318312281
    环科院  周明华  https://www.sciencedirect.com/science/article/pii/S0926337319306484
    环科院  周启星  https://www.sciencedirect.com/science/article/abs/pii/S0926337319311725
    环科院  展思辉  https://www.sciencedirect.com/science/article/pii/S0926337319307295
    环科院  鞠美庭  https://www.sciencedirect.com/science/article/pii/S0926337319303194
    环科院  漆新华  https://www.sciencedirect.com/science/article/pii/S092633731931255X    (通讯作者)
    环科院  Wenjie Li、Hongbin Yu  https://www.sciencedirect.com/science/article/abs/pii/S0926337319312792
    电光学院  王卫超  
https://www.sciencedirect.com/science/article/pii/S0926337319301158
    材料学院/化学院  王丹红、张明慧  https://www.sciencedirect.com/science/article/pii/S0926337319305508
    材料学院  袁忠勇  https://www.sciencedirect.com/science/article/abs/pii/S0926337319310987


生命科学和生物医学(Life sciences and Biomedicine)
    Thorax
    生科院  宁文  
https://thorax.bmj.com/content/early/2019/02/17/thoraxjnl-2018-211846    (通讯作者)
    Molecular Biology and Evolution
    泰达生物  王磊  
https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msz241/5601619    (通讯作者)
    FEMS Microbiology Reviews
    泰达生物  王磊  https://academic.oup.com/femsre/advance-article/doi/10.1093/femsre/fuz028/5645236
    Nucleic Acids Research
    生科院  石建党  
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz482/5506865
    药学院  于仲波  https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz464/5494778
    药学国重  刘林、吕鑫屹  https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz594/5531184


工程技术(Technology)
    IEEE Transactions on Pattern Analysis and Machine Intelligence
    计算机学院  程明明  
https://ieeexplore.ieee.org/document/8821313
    计算机学院  程明明  https://ieeexplore.ieee.org/document/8850209    (通讯作者)
    计算机学院  杨巨峰  
https://ieeexplore.ieee.org/document/8703124
    IEEE Transactions on Neural Networks and Learning Systems
    计算机学院  杨巨峰  
https://ieeexplore.ieee.org/document/8736039
    人工智能学院  方勇纯  https://ieeexplore.ieee.org/document/8941307
    人工智能学院  孙宁  https://ieeexplore.ieee.org/document/8706985
    IEEE Transactions on Cybernetics
    计算机学院  徐君  
https://ieeexplore.ieee.org/document/8871334
    经济与社会发展研究院  肖建华  https://ieeexplore.ieee.org/document/8906244    (第一作者)

备注:按WOS大类领域,分为Arts and Humanities、Life sciences and Biomedicine、Physical Sciences、Social Sciences、Technology五大类。
回复

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
89#
 楼主| 发表于 2020-1-1 19:41:38 | 只看该作者
2019收官!新年快乐!
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
88#
 楼主| 发表于 2019-12-7 17:41:56 | 只看该作者
化学学院元素有机化学研究所王晓晨研究员JACS,通讯作者:王晓晨

J. Am. Chem. Soc., Just Accepted Manuscript, Publication Date (Web): 06 Dec 2019
https://pubs.acs.org/doi/10.1021/jacs.9b11909

Hydrosilylation-Promoted Furan Diels–Alder Cycloadditions with Stereoselectivity Controlled by the Silyl Group

Zhi-Yun Liu,† Ming Zhang,† and Xiao-Chen Wang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
†These authors contributed equally to this work.
Correspondence: xcwang@nankai.edu.cn

ABSTRACT: Herein we describe an unprecedented B(C6F5)3-catalyzed cascade reaction of N- allyl-N-furfurylamides involving an initial intramolecular furan Diels–Alder reaction and subsequent ether clea vage. The reaction has a broad substrate scope, even tolerating a trialkyl- substituted olefin as the dienophile, which has not previously been observed with conventional furan Diels–Alder reactions. In addition, the relative configuration of the product can be controlled by the choice of the silyl group: reactions involving Et3SiH and iPr3SiH ga ve different diastereomers. Control experiments and the computational studies revealed that the steric bulk of the silyl group plays a key role in determining the reaction pathway and thus the relative configuration of the product.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
87#
 楼主| 发表于 2019-11-28 20:16:03 | 只看该作者
化学学院元素有机化学研究所周其林院士团队Science,通讯作者:朱守非,周其林
Science 22 Nov 2019: Vol. 366, Issue 6468, pp. 990-994 DOI: 10.1126/science.aaw9939
https://science.sciencemag.org/content/366/6468/990


Highly enantioselective carbene insertion into N–H bonds of aliphatic amines
Mao-Lin Li, Jin-Han Yu, Yi-Hao Li, Shou-Fei Zhu*, Qi-Lin Zhou*
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
*Corresponding author. Email: sfzhu@nankai.edu.cn (S.-F.Z.); qlzhou@nankai.edu.cn (Q.-L.Z.)

Abstract
Aliphatic amines strongly coordinate, and therefore easily inhibit, the activity of transition-metal catalysts, posing a marked challenge to nitrogen-hydrogen (N–H) insertion reactions. Here, we report highly enantioselective carbene insertion into N–H bonds of aliphatic amines using two catalysts in tandem: an achiral copper complex and chiral amino-thiourea. Coordination by a homoscorpionate ligand protects the copper center that activates the carbene precursor. The chiral amino-thiourea catalyst then promotes enantioselective proton transfer to generate the stereocenter of the insertion product. This reaction couples a wide variety of diazo esters and amines to produce chiral α-alkyl α–amino acid derivatives.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
86#
 楼主| 发表于 2019-11-9 16:05:15 | 只看该作者
生命科学学院丁丹研究员Advanced Materials,通讯作者:丁丹
Advanced Materials Early View First published: 07 November 2019 10.1002/adma.201904914
https://onlinelibrary.wiley.com/doi/10.1002/adma.201904914

Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure

Chao Chen, Xiang Ni, Shaorui Jia, Yong Liang, Xiaoli Wu, Deling Kong, and Dan Ding*

C. Chen, Dr. X. Ni, S. Jia, Prof. D. Kong, Prof. D. Ding
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
E-mail: dingd nankai.edu.cn

Dr. Y. Liang
Department of Clinical Laboratory, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second Hospital, Huai’an 223002, Jiangsu, China

Dr. X. Wu
School of Life Sciences, Tianjin University, Tianjin 300072, China

Prof. D. Kong, Prof. D. Ding
Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China

Abstract

Immunogenic cell death (ICD) provides momentous theoretical principle for modern cancer immunotherapy. However, the currently a vailable ICD inducers are still very limited and photosensitizer‐based ones can hardly induce sufficient ICD to achieve satisfactory cancer immunotherapy by themselves. Herein, an organic photosensitizer (named TPE‐DPA‐TCyP) with a twisted molecular structure, strong aggregation‐induced emission activity, and specific ability is reported for effectively inducing focused mitochondrial oxidative stress of cancer cells, which can serve as a much superior ICD inducer to the popularly used ones, including chlorin e6 (Ce6), pheophorbide A, and oxaliplatin. Furthermore, more effective in vivo ICD immunogenicity of TPE‐DPA‐TCyP than Ce6 is also demonstrated using a prophylactic tumor vaccination model. The underlying mechanism of the effectiveness and robustness of TPE‐DPA‐TCyP in inducing antitumor immunity and immune‐memory effect in vivo is verified by immune cell analyses. This study thus reveals that inducing focused mitochondrial oxidative stress is a highly effective strategy to evoke abundant and large‐scale ICD.

回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
85#
 楼主| 发表于 2019-10-20 18:49:35 | 只看该作者
Science以研究长文形式发表了刘遵峰教授成果,南开为论文的第一作者+通讯作者单位。
Science 11 Oct 2019:,Vol. 366, Issue 6462, pp. 216-221,DOI: 10.1126/science.aax6182
https://science.sciencemag.org/content/366/6462/216

RESEARCH ARTICLE
Torsional refrigeration by twisted, coiled, and supercoiled fibers

Run Wang1,*, Shaoli Fang2,*, Yicheng Xiao1, Enlai Gao2,3, Nan Jiang2,4, Yaowang Li5, Linlin Mou1, Yanan Shen1, Wubin Zhao1, Sitong Li1, Alexandre F. Fonseca6, Douglas S. Galvão6, Mengmeng Chen1, Wenqian He1, Kaiqing Yu1, Hongbing Lu7, Xuemin Wang7,8, Dong Qian7, Ali E. Aliev2, Na Li2,9, Carter S. Haines2, Zhongsheng Liu1, Jiuke Mu2, Zhong Wang2, Shougen Yin10, Márcio D. Lima11, Baigang An12, Xiang Zhou13, Zunfeng Liu1,†, Ray H. Baughman2,†
1State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China.
2Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA.
3Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China.
4Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
5School of Life Sciences, Tsinghua University, Beijing 100084, China.
6Applied Physics Department, State University of Campinas, Campinas, SP 13081-970, Brazil.
7Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA.
8Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458, USA.
9Materials Science, MilliporeSigma, Milwaukee, WI 53209, USA.
10Institute of Materials Physics, Tianjin University of Technology, Tianjin 300384, China.
11Nano-Science and Technology Center, Lintec of America, Richardson, TX 75081, USA.
12School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
13Department of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
↵†Corresponding author. Email: ray.baughman@utdallas.edu (R.H.B.); liuzunfeng@nankai.edu.cn (Z.L.)
↵* These authors contributed equally to this work.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
84#
 楼主| 发表于 2019-9-7 20:38:11 | 只看该作者
南开今年化学各二级学科发文还算是比较均衡:有机、无机、高分子、分析,以及几位物化的PI表现也很不错(如张新星、袁明鉴),新人、老人都发表了一些。不过为了以后上杰青优青,一个人一年一篇绝对是不够的,每年要两三篇J/A级别以上文章才有可能。

本周第二篇JACS上线,作者是分析化学学科的“老人”了,尹学博教授。




化学学院分析科学研究中心尹学博教授JACS,通讯作者:尹学博
J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.9b06755 • Publication Date (Web): 06 Sep 2019
https://pubs.acs.org/doi/10.1021/jacs.9b06755

Rotation Restricted Emission and Antenna Effect in Single MetalOrganic Frameworks

Hua-Qing Yin†, Xin-Yao Wang†, Xue-Bo Yin*,†

†State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular
Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
Corresponding Author
*E-mail: xbyin  nankai.edu.cn; Fax: (+86) 022-23503034

KEYWORDS:
Metal organic frameworks; Rotation restricted emission; Aggregation induced-emission; Coordination induced emission; Antenna effect

ABSTRACT:
Aggregation induced-emission (AIE) and antenna effects are important luminescence beha viors. Thus,
investigating their emission mechanisms and revealing their beha viors ha ve become critical but challenging. Here we design and prepare metal-organic frameworks (MOFs) with an AIE ligand (i.e., tetrakis(4-carboxyphenyl)pyrazine (L1)) and Ln3+ ions (including Eu3+, Tb3+, and Gd3+). The emission from L1 is gradually enhanced during the formation of the MOFs because coordination restricts the intramolecular rotation. Thus, the emission is called as coordination-induced emission (CIE) with the same restriction of intramolecular rotation mechanism as AIE. Meanwhile, benzene rings twist to adapt to the MOFs’ rigid structure, so the emission blueshifts gradually, as an additional evidence of CIE. Both AIE and CIE are “rotation-restricted emission (RRE)”. Eu3+ ions exhibit the strongest emission with gradually enhanced intensity during the formation of L1-Eu MOF. Combining with emission properties from Tb3+ and Gd3+ ions, the antenna effect is verified. We also validate the conditions for the efficient sensitization of Ln3+ ions experimentally and refresh the threshold value of the energy gap between triplet state of a ligand and excited state of Ln3+ ions to 3,000 cm-1. Thus, RRE and antenna effect are revealed and validated simultaneously. Because CIE of L1 and antenna effect emission from Eu3+ ions are enhanced simultaneously as strong dual emissions, ratiometric fluorescence detection is realized with the detection of arginine as a model. Our results incorporate AIE and CIE into RRE, which provides explicit information for the construction and application of emission systems with AIE ligands as building blocks. MOFs are also extended to explore the emission mechanism and the energy transfer between ligands and metal ions.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
83#
 楼主| 发表于 2019-8-10 08:21:52 | 只看该作者
化学学院元素有机化学研究所陈弓课题组Nature Catalysis,通讯作者:陈弓、何刚
Nature Catalysis, DOI:10.1038/s41929-019-0324-5, Published: 05 August 2019
https://www.nature.com/articles/s41929-019-0324-5

陈弓课题组主页:http://gongchenlab.com/

Palladium-catalysed C−H glycosylation for synthesis of C-aryl glycosides

Quanquan Wang, Shuang An, Zhiqiang Deng, Wanjun Zhu, Zeyi Huang, Gang He * and Gong Chen *

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.

*e-mail: hegang  nankai.edu.cn; gongchen  nankai.edu.cn

Abstract
C-aryl glycosides are widely found in nature and play important roles in drug design. Despite the significant progress made over the past few decades, efficient and stereoselective synthesis of complex C-aryl glycosides remains challenging, lagging far behind the state of the art of the synthesis of O- or N-glycosides. Here, we report a simple and powerful bioinspired strategy for the stereoselective synthesis of C-aryl glycosides via palladium-catalysed ortho-directed C(sp2)−H functionalization of arenes and heteroarenes with easily accessible glycosyl chloride donors. The catalytic palladacycle intermediate generated via C−H palladation provides a soft aryl nucleophile that can react with glycosyl oxocarbenium ion partners with high efficiency and excellent stereocontrol. The method can be applied to a wide range of arene and heteroarene substrates, glycosyl chloride donors and auxiliary groups. It can simplify the synthesis of a variety of complex C-aryl lycosides and offers a tool for latestage modification of drug molecules.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
82#
 楼主| 发表于 2019-6-9 15:20:32 | 只看该作者
材料学院现在有两位中科院院士博导,双聘院士李灿和严纯华,今年各招一到两名博士生。从材料学院今年博士生招生来看,引进人才应该是最多的一年。李玉良难道是化学所的院士?南开去年实施双聘院士制度很好,学生的学缘太重要,也有利于开拓新的学科方向。
http://mse.nankai.edu.cn/_upload ... 18-dc3a939e543a.pdf


--------------------------------------------------------------------------------

材料科学与工程学院稀土中心严纯华院士团队(http://mse.nankai.edu.cn/ych/list.htm)共同通讯作者Nano Energy,通讯作者:杜亚平教授(http://dulab.nankai.edu.cn/)。该论文的第一作者+通讯作者单位为西安交通大学。
Nano Energy, DOI:10.1016/j.nanoen.2019.06.009,  A vailable online 8 June 2019
https://www.sciencedirect.com/sc ... i/S2211285519305130

Interplanar Space-controllable Carboxylate Pillared Metal Organic Framework Ultrathin Nanosheet for Superhigh Capacity Rechargeable Alkaline Battery
Junpeng Li a, c, #, §, Hongyang Zhao b, d, #, Jianwei Wang b, Na Li b, Miaomiao Wu b, Qian Zhang a, c, *, §, Yaping Du c, *
a J. Li and Prof. Q. Zhang
Department of Chemistry, Xi’an University of Technology. Xi’an, Shaanxi 710048, China.
b H. Zhao, J. Wang, N. Li and M. Wu
Frontier Institute of Science and Technology, Xi’an Jiaotong University. Xi’an, Shaanxi 710054, China.
c J. Li, Prof. Q. Zhang and Prof. Y. Du
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University. Tianjin 300350, China.
d H. Zhao
School of Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, China.
* Corresponding authors.
E-m ail address: qzh xaut.edu.cn (Q. Zhang), ypdu nankai.edu.cn (Y. Du)
# J. Li and H. Zhao contributed equally to this work.
§ J. Li and Q. Zhang are visiting scholars at Nankai University.
Keywords: metal organic framework, ultrathin nanosheets, rechargeable alkaline battery, interplanar space

Abstract
Hydroxides and their derivatives as cathode materials of rechargeable alkaline batteries ha ve limited specific capacity. In this work, a new ultrathin metal organic framework (MOF) nanosheet with expanded interplanar space is delicately designed. The organic ligand as a pillar enlarges the interplanar space for ion transportation to Ni/Co redox centers. The obtained NiCo-MOF cathode has high capacity and rate retention, specifically, 225 mAh g−1 and 82% capacity retention from 1 to 20 A g−1, which is over four-fold to that of NiCo-LDH. A full cell composed of NiCo-MOF cathode and an organic anode shows high capacity of 280 mAh g−1 with long-term cycle stability. Furthermore, we find electrochemical performance increases linearly with larger interplanar space. The present results can give new insight into structure design for advanced cathode materials and understanding the relationship between structures and performance of alkaline batteries.

Nowadays, the commercial portable energy storage devices such as lead-acid battery, lithium ion battery (LIB), and nickel-based alkaline battery are frequently used in electric vehicles [[1], [2], [3], [4], [5]]. Among them, LIB attracted the most attention due to its high energy density as well as stable energy output [6]. However, the safety issue is a severe problem, stemming from the highly flammable electrolytes [[7], [8], [9]]. Besides, highly toxic fluorine-containing gas can be generated by salt decomposition (i.e. LiPF6, LiTFSI) at high temperatures [[10], [11], [12]]. Solid state electrolyte is a promising solution to solve the safety problem [13]. However, the ionic conductivity and high cost can barely satisfy the need for commercialization in the immediate future, as well as other manufacturing issues [14,15].


Graphical abstract
Carboxylate pillared ultrathin NiCo-MOF nanosheet with large interplanar space is designed to obtain high performance cathode material for rechargeable alkaline battery. The present results show capacity and rate performance increase linearly with larger interplanar space, giving us new insight into structure design for advanced cathode materials of alkaline batteries.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
81#
 楼主| 发表于 2019-5-12 19:48:13 | 只看该作者
环境科学与工程学院展思辉教授ADVANCED MATERIALS,通讯作者:展思辉
ADVANCED MATERIALS, DOI:10.1002/adma.201806843, First published: 10 May 2019
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806843

3D Graphene-Based Macrostructures for Water Treatment
Haitao Wang, Xueyue Mi, Yi Li, and Sihui Zhan*


Abstract

Recently, 3D graphene‐based macrostructures (3D GBMs) ha ve gained increased attention due to their immense application potential in water treatment. The unique structural features (e.g., large surface area and physically interconnected porous network) as well as fascinating properties (e.g., high electrical conductivity, excellent chemical/thermal stability, ultralightness, and high solar‐to‐thermal conversion efficiency) render 3D GBMs as promising materials for water purification through adsorption, capacitive deionization, and solar distillation. Moreover, 3D GBMs can serve as scaffolds to immobilize powder nanomaterials to build monolithic adsorbents and photo‐/electrocatalysts, which significantly broadens their potential applications in water treatment. Here, recent advances in their synthesis and application toward water purification are highlighted. Remaining challenges and future perspectives are elaborated to highlight future research directions.

Prof. H. Wang, Dr. X. Mi, Prof. S. Zhan
Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Lab for Rare Earth Materials and Applications, School of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
E-mail: sihuizhan nankai.edu.cn
Prof. Y. Li
Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
80#
 楼主| 发表于 2019-5-12 19:47:56 | 只看该作者
化学学院师唯教授Chem,通讯作者:师唯,Michael J. Zaworotko
Chem, In press, corrected proof, A vailable online 6 May 2019, 10.1016/j.chempr.2019.04.010
https://www.sciencedirect.com/sc ... i/S2451929419301688

A Gadolinium(III) Zeolite-like Metal-Organic-Framework-Based Magnetic Resonance Thermometer
Shi-Yuan Zhang 12, Zhong-Yan Wang 3, Jie Gao 4, Kunyu Wang 1, Eliana Gianolio 5, Silvio Aime 5, Wei Shi 1*, Zhen Zhou 6, Peng Cheng 1, Michael J. Zaworotko 27*

1Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
2Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, Republic of Ireland
3Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
4State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
5Centro di Biotechnologie Molecolari, University of Torino, Torino 10125, Italy
6School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Nankai University, Tianjin 300350, China

*shiwei nankai.edu.cn

*xtal ul.ie

Summary

MRI contrast agents (CAs) feature coordinated water molecule(s) (aqua ligands), which renders them unsuitable for magnetic resonance (MR) temperature mapping because of their resulting sensitivity to metabolic and physiological changes and/or their tendency to release toxic Gd3+ cations. Herein, we introduce an approach to temperature mapping based upon a coordinatively saturated gadolinium (Gd)-based metal-organic framework (MOF) that exhibits enhanced proton relaxation and high temperature sensitivity. The stable, non-toxic Gd zeolite-like MOF Gd-ZMOF was observed to generate a large enhancement in contrast as a result of a large (70%) contribution from second-sphere water relaxivity. Temperature mapping by clinical CAs and Gd-ZMOF by means of longitudinal (T1) relaxivity was investigated. Gd-ZMOF enabled the visualization of small temperature changes, especially in the thermal therapy region (41°C–45°C). In vivo thermal imaging demonstrates the feasibility of Gd-ZMOF as an MR thermometer and as a potential theranostic.

回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
79#
 楼主| 发表于 2019-5-12 19:47:36 | 只看该作者
化学学院张振杰研究员ANGEWANDTE,通讯作者:张振杰、Banglin Chen、Libo Li
Angew. Chem. Int. Ed., DOI:10.1002/anie.201904312, First published: 06 May 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201904312

Robust Microporous Metal-Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene
from Propylene
Yun-Lei Peng,# [a] Chaohui He,# [c] Tony Pham,[g] Ting Wang,[a] Pengfei Li,[e] Rajamani Krishna,Katherine
A. Forrest,[g ] Adam Hogan,[g] Shanelle Suepaul,[g] Brian Space,[g] Ming Fang,[e] Yao Chen,[f] Michael J. Zaworotko,[h] Jinping Li,[c] Libo Li,* [b ], [c] Zhenjie Zhang,* [a], [d], [f] Peng Cheng,[a], [d]Banglin Chen* [b ]

[a] Y.-L. Peng, T. Wang, Prof. P. Cheng, Prof. Z. Zhang
College of Chemistry, Nankai University, Tianjin, 300071, P. R. China E-mail: zhangzhenjie nankai.edu.cn
[b ] Prof. L. Li, Prof. B. Chen
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States E-mail: banglin.chen utsa.edu
[c] C. He, Prof. J. Li, Prof. L. Li
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China E-mail: lilibo908 hotmail.com,
[d] Prof. P. Cheng, Prof. Z. Zhang
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300071, P. R. China
[e] P. Li, M. Fang
Department of Chemistry, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China
[f] Prof. Y. Chen, Prof. Z. Zhang
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China.
[g] T. Pham, K. A. Forrest, A. Hogan, S. Suepaul, Prof. B. Space
Department of Chemistry, University of South Florida, 4202 East Fowler A venue, CHE205, Tampa, Florida 33620-5250, United States.
[h] Prof. M. J. Zaworotko
Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94T9PX, Republic of Ireland.
Prof. R. Krishna
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
[#] These authors contributed equally to this work.

Abstract

Simultaneous removal of trace amount of propyne and propadiene from propylene is an important but challenging industrial process. In this study, we reported a class of microporous metal‐organic frameworks (NKMOF‐1‐M) with exceptional water stability and remarkably high uptakes for both propyne and propadiene at low pressures. Attributed to the strong bind affinity to propyne and propadiene over propylene, NKMOF‐1‐M created new benchmark selectivities for ternary propyne/propadiene/propylene (0.5/0.5/99.0) mixture, and set as a unique MOF platform to achieve both the highest selectivity and productivity of polymer‐grade propylene (99.996%) at ambient temperature, verified by both simulated and experimental breakthrough results. Moreover, we demonstrated a rare example to visualize propyne and propadiene molecules in the single‐crystal structure of NKMOF‐1‐M through a convenient approach under ambient condition, which helped to precisely understand the binding sites and affinity of propyne and propadiene. These results provide important guidance on using ultramicroporous MOFs as physisorbent materials to resolve industrial challenges related to ternary propyne/propadiene/propylene mixture separation.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
78#
 楼主| 发表于 2019-5-4 18:04:50 | 只看该作者
元素有机化学研究所周其林课题组朱守非教授ACS Catalysis,通讯作者:朱守非
ACS Catal., Just Accepted Publication Date (Web): May 3, 2019 (Letter) DOI: 10.1021/acscatal.9b01187
https://pubs.acs.org/doi/pdf/10.1021/acscatal.9b01187


Rhodium-Catalyzed Si–H Bond Insertion Reactions Using Functionalized Alkynes as Carbene Precursors

Ming-Yao Huang,§ Ji-Min Yang,§ Yu-Tao Zhao, Shou-Fei Zhu*

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

* sfzhu nankai edu cn

§ M.-Y. Huang and J.-M. Yang contributed equally to this work.


ABSTRACT: Enantioselective transition-metal-catalyzed carbene insertion into Si–H bonds is a promising method for preparing chiral organosilicons; however, all the carbene precursors used to date in this reaction ha ve been diazo compounds, which significantly limits the structural diversity of the resulting chiral organosilicons. Herein, we report a protocol for rhodium-catalyzed asymmetric Si–H bond insertion reactions that use functionalized alkynes as carbene precursors. With chiral dirhodium tetracarboxylates as catalysts, the reactions of carbonyl-ene-ynes and silanes smoothly ga ve chiral organosilanes in high yields (up to 98%) with excellent enantioselectivity (up to 98% ee). Kinetic studies suggest that insertion of the in situ generated rhodium carbenes into the Si–H bonds of the silanes is probably the rate-determining step. This work represents the first enantioselective Si–H bond insertion reaction using alkynes as carbene precursors and opens the door for preparing chiral organosilicons with unprecedented structural diversity from readily a vailable alkynes.

KEYWORDS: Asymmetric synthesis, chiral organosilicons, rhodium carbenes, Si–H bond insertion, alkynes
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
77#
 楼主| 发表于 2019-5-4 18:04:23 | 只看该作者
物理学院/泰达应用物理研究院薄方教授共同通讯作者PRL,通讯作者:Wei Fang,薄方,Ya Cheng
Phys. Rev. Lett. 122, 173903, DOI:10.1103/PhysRevLett.122.173903, Published 3 May 2019
https://journals.aps.org/prl/abs ... sRevLett.122.173903

Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator
Jintian Lin,1,* Ni Yao,2,* Zhenzhong Hao,3 Jianhao Zhang,1,5 Wenbo Mao,3 Min Wang,4 Wei Chu,1 Rongbo Wu,1,5
Zhiwei Fang,4 Lingling Qiao,1 Wei Fang,2,† Fang Bo,3,‡ and Ya Cheng1,4,5,6,§
1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
3. The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
4. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
5. University of Chinese Academy of Sciences, Beijing 100049, China
6. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

*These authors contributed equally to this work.
wfang08@zju.edu.cn
bofang@nankai.edu.cn
§ya.cheng@siom.ac.cn

Abstract  

We reveal a unique broadband natural quasi-phase-matching (QPM) mechanism underlying an observation of highly efficient second- and third-order harmonic generation at multiple wa velengths in an x-cut lithium niobate (LN) microdisk resonator. For light wa ves in the transverse-electric mode propagating along the circumference of the microdisk, the effective nonlinear optical coefficients naturally oscillate periodically to change both the sign and magnitude, facilitating QPM without the necessity of domain engineering in the micrometer-scale LN disk. The second-harmonic and cascaded third-harmonic wa ves are simultaneously generated with normalized conversion efficiencies as high as 9.9%/mW and 1.05%/mW2, respectively, thanks to the utilization of the highest nonlinear coefficient d33 of LN. The high efficiency achieved with the microdisk of a diameter of ∼30  μm is beneficial for realizing high-density integration of nonlinear photonic devices such as wa velength convertors and entangled photon sources.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
76#
 楼主| 发表于 2019-5-4 18:04:03 | 只看该作者
千呼万唤南开ANGEW的review总算有了一点点影子,今年ANGEW和南开是否会出百年校庆的Special Issue呢?目前为止与南开有关的ANGEW的mini review有南开新能源所的牛志强研究员和上海有机所的游书力(http://shuliyou.sioc.ac.cn/?cat=56https://www.onlinelibrary.wiley. ... 1002/anie.201808700)研究员,游书力校友这篇ANGEW已经接受半年多都没有正式出版。。。这不合理。

化学学院牛志强研究员ANGEW的mini review,通讯作者:牛志强研究员
Angew. Chem. Int. Ed.,DOI: 10.1002/anie.201903941,Minireview,First published: 02 May 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201903941

Design Strategies of Vanadium-based Aqueous Zinc-Ion Batteries
Fang Wan and Zhiqiang Niu*

Dedicated to 100th Anniversary of Nankai University

F. Wan, Prof. Z. Niu
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
E-mail: zqniu nankai.edu.cn


Abstract

Aqueous zinc-ion batteries (ZIBs) are considered as the promising energy storage devices for large-scale energy storage systems due to their high safety and low cost. In recent years, various vanadium-based compounds ha-ve been widely developed to serve as the cathodes of aqueous ZIBs because of their low cost and high theoretical capacity. Furthermore, different energy storage mechanisms are observed in the ZIBs based on vanadium-based cathodes. In this minireview, we present the comprehensive overview of the energy storage mechanisms and structural features of various vanadium-based cathodes in ZIBs. Furthermore, we discuss the strategies for improving the electrochemical performance of vanadium-based cathodes, including insertion of metal ions, adjustment of structural water, selection of conductive additives and optimization of electrolytes. Finally, this minireview also offers insights regarding the potential future directions in the design of innovative vanadium-based electrode materials.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
75#
 楼主| 发表于 2019-5-4 18:02:45 | 只看该作者
物理学院陈璟教授共同通讯作者PRL

http://my.nankai.edu.cn/wlxy/cj/list.htm
https://arxiv.org/ftp/arxiv/papers/1810/1810.02354.pdf
https://journals.aps.org/prl/acc ... f3e7f1d697e4df0e27b


Observation of Three-dimensional Photonic Dirac points and Spin-polarized Surface Arcs
Qinghua Guo1, 2†, Oubo You1, 3†, Biao Yang1, 4†, James B. Sellman1, Edward Blythe1, Hongchao Liu1, Yuanjiang Xiang3, Jensen Li 1, 2, Dianyuan Fan3, Jing Chen5*, C. T. Chan2*, Shuang Zhang1*

1. School of Physics & Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
2. Department of Physics and Center for Metamaterials Research, The Hong Kong University of Science and Technology, Hong Kong, China.
3. International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, China.
4. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
5. School of Physics, Nankai University, Tianjin 300071, China.
*Correspondence to: jchen4@nankai.edu.cn; phchan@ust.hk; s.zhang@bham.ac.uk
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
74#
 楼主| 发表于 2019-5-4 18:02:00 | 只看该作者
化学学研高分子所史林启课题组ADVANCED MATERIALS,通讯作者:史林启、刘阳
ADVANCED MATERIALS, DOI:10.1002/adma.201805945, First published: 02 May 2019
https://onlinelibrary.wiley.com/doi/10.1002/adma.201805945

Mimicking Molecular Chaperones to Regulate Protein Folding
Fei-He Ma, Chang Li, Yang Liu,* and Linqi Shi*
Dr. F.-H. Ma, Dr. C. Li, Prof. Y. Liu, Prof. L. Shi
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
E-mail: yliu nankai.edu.cn; shilinqi nankai.edu.cn

Abstract

Folding and unfolding are essential ways for a protein to regulate its biological activity. The misfolding of proteins usually reduces or completely compromises their biological functions, which eventually causes a wide range of diseases including neurodegeneration diseases, type II diabetes, and cancers. Therefore, materials that can regulate protein folding and maintain proteostasis are of significant biological and medical importance. In living organisms, molecular chaperones are a family of proteins that maintain proteostasis by interacting with, stabilizing, and repairing various non‐native proteins. In the past few decades, efforts ha ve been made to create artificial systems to mimic the structure and biological functions of nature chaperonins. Herein, recent progress in the design and construction of materials that mimic different kinds of natural molecular chaperones is summarized. The fabrication methods, construction rules, and working mechanisms of these artificial chaperone systems are described. The application of these materials in enhancing the thermal stability of proteins, assisting de novo folding of proteins, and preventing formation of toxic protein aggregates is also highlighted and explored. Finally, the challenges and potential in the field of chaperone‐mimetic materials are discussed.

回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
73#
 楼主| 发表于 2019-5-4 18:01:36 | 只看该作者
化学学院史林启教授课题组Advanced Science,通讯作者:史林启、余志林
Advanced Scienc,DOI:10.1002/advs.201802043,First published: 29 April 2019
https://onlinelibrary.wiley.com/doi/10.1002/advs.201802043

Peptide Tectonics: Encoded Structural Complementarity
          Dictates Programmable Self-Assembly
Shaofeng Lou, Xinmou Wang, Zhilin Yu,* and Linqi Shi*

Dr. S. Lou, X. Wang, Prof. Z. Yu, Prof. L. Shi
Key Laboratory of Functional Polymer Materials, Ministry of Education
State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry,College of Chemistry
Nankai University,Weijin Road 94, Tianjin 300071, China
E-mail: yzh026 nankai.edu.cn; lqshi nankai.edu.cn


Abstract
Programmable self‐assembly of peptides into well‐defined nanostructures represents one promising approach for bioinspired and biomimetic synthesis of artificial complex systems and functional materials. Despite the progress made over the past two decades in the development of strategies for precise manipulation of the self‐assembly of peptides, there is a remarkable gap between current peptide assemblies and biological systems in terms of structural complexity and functions. Here, the concept of peptide tectonics for the creation of well‐defined nanostructures predominately driven by the complementary association at the interacting interfaces of tectons is introduced. Peptide tectons are defined as peptide building blocks exhibiting structural complementarity at the interacting interfaces of commensurate domains and undergoing programmable self‐assembly into defined supramolecular structures promoted by complementary interactions. Peptide tectons are categorized based on their conformational entropy and the underlying mechanism for the programmable self‐assembly of peptide tectons is highlighted focusing on the approaches for incorporating the structural complementarity within tectons. Peptide tectonics not only provides an alternative perspective to understand the self‐assembly of peptides, but also allows for precise manipulation of peptide interactions, thus leading to artificial systems with advanced complexity and functions and pa ves the way toward peptide‐related functional materials resembling natural systems.
回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
72#
 楼主| 发表于 2019-5-4 18:01:11 | 只看该作者
化学学院张振杰研究员COORD CHEM REV,通讯作者:张振杰
Coordination Chemistry Reviews, DOI:10.1016/j.ccr.2019.04.003, online 28 April 2019.
https://www.sciencedirect.com/sc ... i/S0010854518306192

The utility of the template effect in metal-organic frameworks
XiuxiuGuoa1 ShuboGenga1 MingjingZhuobd YaoChenbd Michael J.Zaworotkoe PengChengac ZhenjieZhangabc*
a College of Chemistry, Nankai University, Tianjin 300071, Chinab State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, Chinac Key Laboratory of Advanced Energy Materials Chemistry, Nankai University, Tianjin 300071, Chinad College of Pharmacy, Nankai University, Tianjin 300071, Chinae Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
*Corresponding author at: College of Chemistry, Nankai University, Tianjin 300071, China.
E-mail address: zhangzhenjie nankai.edu.cn (Z. Zhang).
1 These authors contributed equally to this work.

Abstract


This review details the emergence and continued study of the template effect in metal-organic frameworks (MOFs) with emphasis upon (i) reports of template-directed synthesis of MOFs and (ii) using MOFs as hosts to template the formation of new guest species. We focus herein on the relationship between the pore environments of MOF hosts and their guests, and the resulting host-guest properties. Such understanding can enable template effects to serve as a supplementary tool of crystal engineering since it can afford new and otherwise unattainable MOF structures. Templating can also result in control over the chemical reactivity of guests through an enzymatic like process. We also address emerging applications of MOFs formed through a template effect. We anticipate that this review will provide a guide for future research into preparing functional MOFs with targeted structures or properties and to generate reaction products using MOFs as templates.

回复 支持 反对

使用道具 举报

33

主题

1143

帖子

5200

积分

论坛元老

Rank: 8Rank: 8

积分
5200
71#
 楼主| 发表于 2019-4-27 09:27:31 | 只看该作者
本帖最后由 NKU 于 2019-4-26 19:09 编辑


陈军院士课题组今年也在量上爆发了,陈军课题组经验真可以外推到其他老师课题组。南开今年化学两刊估计达70篇以上,数量可以争第一了。希望Nature、Science能突破。

化学院陈军院士课题组ANGEW,通讯作者:谢微研究员
Angew. Chem. Int. Ed. 10.1002/anie.201902825 ,First published: 25 April 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201902825

C−H Arylation on Ni Nanoparticles Discovered by in Situ SERS Monitoring
Yonglong Li, Yanfang Hu, Faxing Shi, Haixia Li, Wei Xie* and Jun Chen

Dedicated to 100th anniversary of Nankai University

Y. L. Li, Y. F. Hu, F. X. Shi, H. X. Li, Prof. W. Xie, Prof. J. Chen
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center,  College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China

Abstract
Bifunctional Au@Ni core‐satellite nanostructures synthesized via a one‐step assembling method are employed for in situ surface‐enhanced Raman spectroscopic (SERS) monitoring of Ni‐catalyzed C‐C bond‐forming reactions. Surprisingly, the reaction which was thought to be an Ullmann‐type self‐coupling reaction, is found to be a cross‐coupling reaction proceeding via photo‐induced aromatic C‐H bond arylation. According to the discovery enabled by the in situ SERS monitoring, a series of biphenyl compounds are synthesized at room temperature by photocatalytic reaction using the cheap Ni NP catalysts.
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|国立浙江大学论坛  

GMT+8, 2024-5-4 08:56 , Processed in 0.137207 second(s), 21 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表