国立浙江大学论坛

标题: 南开2019年代表性论文 [打印本页]

作者: NKU    时间: 2019-2-12 09:13
标题: 南开2019年代表性论文
本帖最后由 NKU 于 2020-1-1 19:39 编辑

    以下共305篇(2019.12.30,不含并列一作等)

备注:
  (1)统计IF>10+PRL/PNAS的Article、Review,非特别注明则南开为第一作者+通讯作者单位;
  (2)以出版商在线发表时间(2019年)为标准,IF采用2019年发布的JCR。
  (3)南开代表性论文前传,这是传送门:http://bbs1.netbig.com/thread-2842965-1-1.html
  (4)2019年10月17日,南开建校100周年


Nature/Science/Cell/PNAS系列
    Science
    化学院/元素所  周其林、朱守非  https://science.sciencemag.org/content/366/6468/990
    化学院/药学院  刘遵峰  https://science.sciencemag.org/content/366/6462/216
    生科院  曹雪涛  https://science.sciencemag.org/content/365/6454/eaa v0758

    Nature Electronics
    化学院  陈永胜  https://www.nature.com/articles/s41928-019-0315-1
    Nature Chemistry
    化学院  陈军  https://www.nature.com/articles/s41557-019-0298-6    (通讯作者)

    Nature Catalysis
    元素所  陈弓、何刚  https://www.nature.com/articles/s41929-019-0324-5
    环科院  周启星  https://www.nature.com/articles/s41929-019-0338-z
    Nature Reviews Immunology
    生科院  
曹雪涛、张迁  https://www.nature.com/articles/s41577-019-0151-6
    Nature Communications
    化学院  陈永胜  https://www.nature.com/articles/s41467-019-10984-6    (通讯作者)
    元素所  朱守非、彭谦  https://www.nature.com/articles/s41467-019-11245-2    (通讯作者)
    元素所  彭谦  https://www.nature.com/articles/s41467-019-10357-z    (并列一作,不计入总数)
    元素所  王小野  https://www.nature.com/articles/s41467-019-13428-3    (通讯作者)
    元素所  薛小松、赵东兵  https://www.nature.com/articles/s41467-019-12949-1
    化学院  袁明鉴  https://www.nature.com/articles/s41467-019-09794-7
    化学院  张新星  https://www.nature.com/articles/s41467-019-09154-5
    化学院  师唯  https://www.nature.com/articles/s41467-019-13090-9
    化学院/药学院  刘遵峰  https://www.nature.com/articles/s41467-019-13257-4
    化学院  郭东升  https://www.nature.com/articles/s41467-019-13775-1
    化学院  Qian Zhao  https://www.nature.com/articles/s41467-019-10856-z    (第一作者)
    化学院  郭天瑛  
https://www.nature.com/articles/s41467-019-11190-0    (通讯作者)
    物理学院  胡振芃  https://www.nature.com/articles/s41467-019-11789-3    (通讯作者+并列一作)
    物理学院  张立新  
https://www.nature.com/articles/s41467-019-09269-9    (通讯作者+并列一作)
    材料学院  徐加良  
https://www.nature.com/articles/s41467-019-12601-y    (通讯作者)
    电光学院  李跃龙  https://www.nature.com/articles/s41467-019-13389-7    (通讯作者+并列一作)
    生科院  马彪、朱玉山、陈佺  
https://www.nature.com/articles/s41467-019-08618-y
    生科院  孔德领、王恺  
https://www.nature.com/articles/s41467-019-12545-3
    生科院  刘斌  https://www.nature.com/articles/s41467-018-08197-4    (通讯作者)
    生科院  丁丹  
https://www.nature.com/articles/s41467-019-08722-z    (通讯作者+并列一作)
    生科院  胡俊杰  https://www.nature.com/articles/s41467-019-11860-z    (通讯作者+并列一作)
    生科院  Lin Cao  https://www.nature.com/articles/s41467-019-11668-x    (并列一作,不计入总数)
    泰达生物  Xiaolong Shao  
https://www.nature.com/articles/s41467-019-10778-w    (并列一作,不计入总数)
    Science Advances
    化学院  陈永胜 https://advances.sciencemag.org/content/5/4/eaa v2589
    元素所  汪清民  https://advances.sciencemag.org/content/5/10/eaax9955
    物理学院  李勇男  https://advances.sciencemag.org/content/5/6/eaat9206    (通讯作者)
    生科院  石建党  
https://advances.sciencemag.org/content/5/7/eaaw6710
    Chem
   
元素所  刘育  https://www.sciencedirect.com/science/article/pii/S2451929418305874    (通讯作者)
    化学院  陈军  
https://www.sciencedirect.com/science/article/pii/S2451929419302384
    化学院  李福军、雷凯翔  https://www.sciencedirect.com/science/article/abs/pii/S2451929419304620
    化学院  师唯  https://www.sciencedirect.com/science/article/pii/S2451929419301688
    生科院  丁丹  https://www.sciencedirect.com/science/article/abs/pii/S2451929419303249    (通讯作者+并列一作)
    PNAS
    药学院  杨娜  https://www.pnas.org/content/early/2019/09/11/1904672116



自然科学(Physical Sciences)
物理
    PRL

    物理学院  许京军、陈志刚  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.123903
    物理学院  许京军、陈志刚,胡毅  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.234101
    物理学院  陈树琪、程化  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.104302
    物理学院  Hang Ren  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.140405    (第一作者)
    物理学院  薄方  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.173903    (通讯作者)
    物理学院  陈璟  https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.203903    (通讯作者)
    Light:Science&Applications
    电光学院  向东、徐炳乾  
https://www.nature.com/articles/s41377-019-0144-z
化学
    JACS
    元素所  
刘育  https://pubs.acs.org/doi/10.1021/jacs.8b13675
    材料学院  卜显和、李伟  https://pubs.acs.org/doi/10.1021/jacs.9b01874
    材料学院  卜显和、胡同亮  https://pubs.acs.org/doi/10.1021/jacs.9b07807
    元素所  周其林、肖力军  https://pubs.acs.org/doi/10.1021/jacs.8b13251
    元素所  朱守非  https://pubs.acs.org/doi/abs/10.1021/jacs.9b02127
    元素所  陈弓、何刚  https://pubs.acs.org/doi/10.1021/jacs.9b02811
    元素所  陈弓  https://pubs.acs.org/doi/10.1021/jacs.9b04221
    元素所  陈弓  https://pubs.acs.org/doi/10.1021/jacs.9b09127    (通讯作者)
    元素所  王晓晨  
https://pubs.acs.org/doi/10.1021/jacs.9b11909
    元素所  薛小松  https://pubs.acs.org/doi/10.1021/jacs.9b08243
    元素所  薛小松  https://pubs.acs.org/doi/10.1021/jacs.8b12674    (第一作者)
    元素所  徐效华、金钟  https://pubs.acs.org/doi/pdf/10.1021/jacs.8b13403
    元素所  资伟伟  https://pubs.acs.org/doi/pdf/10.1021/jacs.9b07600
    元素所  崔春明  https://pubs.acs.org/doi/10.1021/jacs.9b11913
    化学院  张振杰  https://pubs.acs.org/doi/10.1021/jacs.9b04319
    化学院/药学院  张振杰、陈瑶  https://pubs.acs.org/doi/10.1021/jacs.9b05155
    化学院  邵学广、蔡文生  https://pubs.acs.org/doi/10.1021/jacs.9b08477
    化学院/生科院  丁丹、史林启  https://pubs.acs.org/doi/10.1021/jacs.8b13889    (通讯作者+并列一作)
    化学院  尹学博  https://pubs.acs.org/doi/10.1021/jacs.9b06755
    材料学院  李兰冬  https://pubs.acs.org/doi/10.1021/jacs.9b03361
    网安学院  Andreas Terfort  https://pubs.acs.org/doi/10.1021/jacs.9b08169    (通讯作者)
    药学院  程剑松  https://pubs.acs.org/doi/abs/10.1021/jacs.9b00044    (并列一作,不计入总数)
    ANGEWANDTE
    元素所  刘育  
https://onlinelibrary.wiley.com/doi/10.1002/anie.201901882
    元素所  刘育  https://onlinelibrary.wiley.com/doi/10.1002/anie.201903243
    材料学院  卜显和  https://onlinelibrary.wiley.com/doi/10.1002/anie.201903817
    材料学院  卜显和、李朝阳  https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201900789
    材料学院  卜显和、许健  https://onlinelibrary.wiley.com/doi/10.1002/anie.201900190
    材料学院  卜显和、常泽  https://onlinelibrary.wiley.com/doi/10.1002/anie.201906278
    元素所  王晓晨  https://onlinelibrary.wiley.com/doi/10.1002/anie.201900907
    元素所  王晓晨  https://onlinelibrary.wiley.com/doi/10.1002/anie.201907943
    元素所  崔春明、李剑峰  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201913773
    元素所  崔春明  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201903418    (通讯作者)
    元素所  梁广鑫  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902043
    元素所  汤平平  https://onlinelibrary.wiley.com/doi/10.1002/anie.201901447
    元素所  彭谦  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902464    (通讯作者+并列一作)
    元素所  叶萌春、李正名  https://onlinelibrary.wiley.com/doi/10.1002/ange.201902607
    化学院  牛志强  https://onlinelibrary.wiley.com/doi/10.1002/anie.201814653
    化学院  牛志强  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902679
    化学院  牛志强  https://onlinelibrary.wiley.com/doi/10.1002/anie.201903941
    化学院  张振杰  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904312
    化学院  张振杰  https://onlinelibrary.wiley.com/doi/10.1002/anie.201913802
    化学院  张振杰  https://onlinelibrary.wiley.com/doi/10.1002/anie.201910749
    化学院  张新星  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902815
    化学院  张新星  https://onlinelibrary.wiley.com/doi/10.1002/anie.201906279
    化学院  张新星  https://onlinelibrary.wiley.com/doi/10.1002/anie.201907089    (通讯作者)
    化学院  赵斌  
https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201901786
    化学院  赵斌  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201906306
    化学院  赵斌  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201907557
    化学院  李福军  https://onlinelibrary.wiley.com/doi/10.1002/anie.201905954
    化学院  李福军  https://onlinelibrary.wiley.com/doi/10.1002/anie.201911228
    化学院  郭东升  https://onlinelibrary.wiley.com/doi/10.1002/anie.201813397
    化学院  程方益  https://onlinelibrary.wiley.com/doi/10.1002/anie.201914335
    化学院  陶占良  https://onlinelibrary.wiley.com/doi/10.1002/anie.201908913
    化学院  谢微  https://onlinelibrary.wiley.com/doi/10.1002/anie.201902825
    化学院  王鸿  https://onlinelibrary.wiley.com/doi/10.1002/anie.201907752
    化学院  陈朗星  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201900658
    化学院  赵汉英、刘丽  https://onlinelibrary.wiley.com/doi/10.1002/anie.201903798
    化学院  张望清  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201904991
    化学院  肖乐辉  https://onlinelibrary.wiley.com/doi/10.1002/ange.201902987    (通讯作者)
    化学院/物理学院  袁明鉴、杨帆  https://onlinelibrary.wiley.com/doi/10.1002/anie.201911281
    化学院  陈军  https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201902185
    药学院  陈悦、王良、丁亚辉  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904096
    药学院  李昌华  https://onlinelibrary.wiley.com/doi/10.1002/anie.201907510
    环科院  展思辉  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904571
    环科院  展思辉  https://onlinelibrary.wiley.com/doi/10.1002/anie.201901771
    环科院  展思辉  https://onlinelibrary.wiley.com/doi/10.1002/anie.201914001
    材料学院  孙忠明  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904109
    材料学院  杜亚平  https://onlinelibrary.wiley.com/doi/10.1002/anie.201812972    (通讯作者)
    材料学院  
杜亚平  https://onlinelibrary.wiley.com/doi/10.1002/anie.201905852    (通讯作者)
    材料学院  周震  
https://onlinelibrary.wiley.com/doi/10.1002/anie.201911338    (通讯作者)
    材料学院  Yamashita  
https://onlinelibrary.wiley.com/doi/10.1002/anie.201910523    (通讯作者)
    物理学院  Lifu Zhang  https://onlinelibrary.wiley.com/doi/10.1002/anie.201904614    (并列一作,不计入总数)
    ACS Catalysis

    元素所  朱守非  https://pubs.acs.org/doi/10.1021/acscatal.9b01187
    元素所  朱守非、周其林  https://pubs.acs.org/doi/10.1021/acscatal.9b01502
    元素所  陈弓、何刚、彭谦  https://pubs.acs.org/doi/10.1021/acscatal.9b01350
    元素所  陈弓、何刚  https://pubs.acs.org/doi/10.1021/acscatal.9b04768
    元素所  陈弓、何刚、王浩  https://pubs.acs.org/doi/10.1021/acscatal.9b04285
    元素所  赵东兵  https://pubs.acs.org/doi/10.1021/acscatal.9b00771
    元素所  关冰涛  https://pubs.acs.org/doi/10.1021/acscatal.9b02899
    化学院  张振杰、程鹏  https://pubs.acs.org/doi/10.1021/acscatal.9b01783
    化学院  王贵昌  https://pubs.acs.org/doi/abs/10.1021/acscatal.8b04427
    化学院  王贵昌  https://pubs.acs.org/doi/abs/10.1021/acscatal.8b03765
    化学院/环科院  王贵昌、Kai Yu  https://pubs.acs.org/doi/10.1021/acscatal.9b02115
    材料学院  李兰冬、戴卫理  https://pubs.acs.org/doi/10.1021/acscatal.9b00641
    材料学院  李兰冬、戴卫理  https://pubs.acs.org/doi/10.1021/acscatal.9b02850
    电光学院  陈海军  https://pubs.acs.org/doi/10.1021/acscatal.9b02975
    物理学院  Lifu Zhang  https://pubs.acs.org/doi/abs/10.1021/acscatal.8b05061    (并列一作,不计入总数)
    ACS Central Science
    化学院/药学院  张振杰、陈瑶  https://pubs.acs.org/doi/10.1021/acscentsci.9b00212
    Acc. Chem. Res.
    元素所  苏循成  https://pubs.acs.org/doi/10.1021/acs.accounts.9b00132
    元素所  王小野  https://pubs.acs.org/doi/10.1021/acs.accounts.9b00322
    元素所  薛小松  https://pubs.acs.org/doi/10.1021/acs.accounts.9b00393
    化学院  蔡文生  https://pubs.acs.org/doi/10.1021/acs.accounts.9b00473
    Chem. Soc. Rev.
    化学院  史林启  
https://pubs.rsc.org/en/content/articlelanding/2019/cs/c7cs00807d
    Coordination Chemistry Reviews
    材料学院  卜显和、胡同亮  https://www.sciencedirect.com/science/article/abs/pii/S001085451830599X

    材料学院  卜显和  https://www.sciencedirect.com/science/article/abs/pii/S001085451830609X
    材料学院  卜显和  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306143    (通讯作者)
    材料学院  杜亚平  https://www.sciencedirect.com/science/article/pii/S0010854519300839
    材料学院  李伟  https://www.sciencedirect.com/science/article/abs/pii/S0010854519300219
    化学院  郭东升、孙宏伟  https://www.sciencedirect.com/science/article/abs/pii/S001085451830554X
    化学院  师唯、程鹏  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306313
    化学院  张振杰  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306192
    化学院  赵斌  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306131
    元素所  崔春明、李建峰  https://www.sciencedirect.com/science/article/abs/pii/S0010854518305186

    药学院  陈瑶  https://www.sciencedirect.com/science/article/abs/pii/S0010854518306155

    Nat. Prod. Rep.
    元素所  金钟  
https://pubs.rsc.org/en/content/articlelanding/2019/np/c8np00055g
材料
    Advanced Materials
(100th Anniversary of Nankai University)
    元素所  刘育  
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806158
    材料学院  卜显和、胡同亮  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806445
    材料学院  卜显和、徐加良  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806736
    化学院  陈永胜  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805843
    化学院  程方益  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806326
    化学院  赵斌  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806163
    化学院  焦丽芳  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806304
    化学院  程鹏、师唯  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805871
    化学院  刘阳、史林启  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805945
    化学院  张会旗  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806328
    化学院  王维  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805863
    化学院  郭玮炜  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806538
    物理学院  许京军、蔡卫、任梦昕  https://www.onlinelibrary.wiley.com/doi/10.1002/adma.201806317
    物理学院  许京军、孔勇发  https://www.onlinelibrary.wiley.com/doi/10.1002/adma.201806452
    物理学院  陈树琪  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805912
    电光学院  张晓丹、罗景山  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806474
    环科院  展思辉  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806843
    材料学院  朱剑  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806480
    材料学院  杜亚平、严纯华  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806461
    材料学院  梁嘉杰  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805864
    材料学院  高学平、李国然  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806478
    生科院  杨志谋  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805798
    生科院  丁丹  https://onlinelibrary.wiley.com/doi/10.1002/adma.201806331
    生科院  赵强  https://onlinelibrary.wiley.com/doi/10.1002/adma.201805818
    Advanced Materials
    化学院  陈永胜、万相见 https://onlinelibrary.wiley.com/doi/10.1002/adma.201804723
    化学院  陈永胜、刘永胜  https://onlinelibrary.wiley.com/doi/10.1002/adma.201901242
    化学院  陈军  https://onlinelibrary.wiley.com/doi/10.1002/adma.201901808
    化学院  刘阳、史林启  https://onlinelibrary.wiley.com/doi/10.1002/adma.201902542
    化学院  刘阳、史林启  https://onlinelibrary.wiley.com/doi/10.1002/adma.201905751
    化学院  牛志强  https://onlinelibrary.wiley.com/doi/10.1002/adma.201903955
    物理学院  陈树琪 https://onlinelibrary.wiley.com/doi/10.1002/adma.201802458
    物理学院  陈树琪  https://onlinelibrary.wiley.com/doi/10.1002/adma.201901729
    生科院  丁丹  https://onlinelibrary.wiley.com/doi/10.1002/adma.201904914
    生科院  丁丹 https://onlinelibrary.wiley.com/doi/10.1002/adma.201807222    (通讯作者+并列一作)
    电光学院  王卫超 https://onlinelibrary.wiley.com/doi/10.1002/adma.201804769    (通讯作者)
    材料学院  徐加良
https://onlinelibrary.wiley.com/doi/10.1002/adma.201807981    (通讯作者)
    Advanced Science
    化学院  史林启、余志林 https://onlinelibrary.wiley.com/doi/10.1002/advs.201802043
    化学院/生科院  史林启  冯喜增  https://onlinelibrary.wiley.com/doi/10.1002/advs.201901844
    化学院 王鸿  https://onlinelibrary.wiley.com/doi/10.1002/advs.201902170
    物理学院  潘雷霆  https://onlinelibrary.wiley.com/doi/10.1002/advs.201900865    (第一作者)
    材料学院  高学平  
https://onlinelibrary.wiley.com/doi/10.1002/advs.201900620
    材料学院  李兰冬  https://onlinelibrary.wiley.com/doi/10.1002/advs.201900299
    材料学院  梁嘉杰  https://onlinelibrary.wiley.com/doi/10.1002/advs.201900943    (通讯作者)
    材料学院  楼兰兰  
https://onlinelibrary.wiley.com/doi/10.1002/advs.201901970
    电光学院  王卫超  https://onlinelibrary.wiley.com/doi/10.1002/advs.201901614
    Advanced Energy Materials
    化学院  陈永胜  
https://onlinelibrary.wiley.com/doi/10.1002/aenm.201803541
    化学院  陈永胜、万相见  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201901024
    化学院  万相见  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201902688
    化学院  李福军  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201900022
    化学院  焦丽芳  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201902104
    化学院  焦丽芳  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201902703
    材料学院  梁嘉杰  https://onlinelibrary.wiley.com/doi/10.1002/aenm.201803987
    材料学院 高学平  https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201803477
    化学院  陶占良 https://onlinelibrary.wiley.com/doi/pdf/10.1002/aenm.201803210    (通讯作者)
    Advanced Functional Materials
    化学院  袁明鉴  
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201807696
    化学院  陈军  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201904843    (通讯作者)
    药学院  
刘遵峰  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808241
    药学院  刘遵峰  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808995
    材料学院  高学平  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201901051
    材料学院  高学平、刘胜  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808756
    材料学院  周震  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201807895    (通讯作者+并列一作)
    材料学院  周震  https://www.onlinelibrary.wiley.com/doi/10.1002/adfm.201908285    (通讯作者)
    电光学院  程雅慧  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808747

    电光学院  王卫超  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201906890    (通讯作者)
    生科院  欧来良  
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808961
    生科院  丁丹  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201902673    (通讯作者)
    生科院  丁丹  https://onlinelibrary.wiley.com/doi/10.1002/adfm.201908125
    Nano Letter
    物理学院  陈树琪  
https://pubs.acs.org/doi/10.1021/acs.nanolett.8b04923
    化学院  袁直  https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b04645
    化学院  刘阳、史林启  https://pubs.acs.org/doi/10.1021/acs.nanolett.9b02501
    化学院/生科院 余志林、苏循成、丁丹  https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b03136
    生科院  王恺、高洁、杨志谋  https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b04406
    ACS Nano
    材料学院  梁嘉杰  
https://pubs.acs.org/doi/10.1021/acsnano.9b03161
    化学院  刘定斌  https://pubs.acs.org/doi/10.1021/acsnano.8b07054
    化学院  肖乐辉  https://pubs.acs.org/doi/10.1021/acsnano.9b05354
    化学院  谢微、赵东兵  https://pubs.acs.org/doi/10.1021/acsnano.9b05523
    医学院/生科院  李宗金、王悦冰、丁丹  https://pubs.acs.org.cn/doi/abs/10.1021/acsnano.8b09776
    材料学院  徐加良  https://pubs.acs.org/doi/10.1021/acsnano.8b06308    (通讯作者+并列一作)
    ACS Energy Letters
    电光学院  张晓丹  https://pubs.acs.org/doi/10.1021/acsenergylett.9b02112
    化学院  Qian Zhang  https://pubs.acs.org/doi/10.1021/acsenergylett.9b02395    (第一作者)
    JOURNAL OF MATERIALS CHEMISTRY A
    化学院  陈永胜  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12064a
    化学院  陈永胜  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta10786f
    化学院  陈永胜  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta07760j    (通讯作者)
    化学院  陈军  
https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta06817a
    化学院  陈军  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta02803j
    化学院  程方益  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta09873a
    化学院  牛志强  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta02990g
    化学院  焦丽芳  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta09643d    (通讯作者)
    化学院  陶占良  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta00474b
    化学院  郑文君  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta11827f
    材料学院  周震  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta03628h
    材料学院  周震  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta01882d
    材料学院  周震  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta08025b
    材料学院  周震、Menggai Jiao  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta06286f
    材料学院  李朝阳  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta08077e
    材料学院  袁忠勇  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta03300a
    材料学院  高学平  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta04555d
    材料学院  杜亚平  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta07424d    (通讯作者)
    电光学院  王卫超  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta03529j
    电光学院  杨大驰  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta01013k
    电光学院  杨大驰  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta00854c
    环科院  李克勋、Cuicui Lv  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12433g
    环科院  周明华  https://pubs.rsc.org/en/content/articlelanding/2019/ta/c9ta07491k
    Small
    材料学院  卜显和  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201903410
    材料学院  卜显和、常泽  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201900426
    材料学院  卜显和、朱剑  https://onlinelibrary.wiley.com/doi/10.1002/smll.201906086
    化学院  尹学博  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201901803
    化学院  马建功、程鹏  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201804849
    化学院  焦丽芳  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201901775    (通讯作者)
    化学院  侴术雷  https://onlinelibrary.wiley.com/doi/10.1002/smll.201902767
    药学院  刘遵峰  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201804805
    环科院  陈威、刘璐  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201900020
    电光学院  徐文涛  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201900695
    电光学院  王晓雷  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201902890    (通讯作者)
    电光学院  王卫超  https://www.onlinelibrary.wiley.com/doi/10.1002/smll.201902373    (通讯作者)
    Joule
    电光学院  罗景山  
https://www.sciencedirect.com/science/article/abs/pii/S2542435119304842    (通讯作者)
    Renewable and Sustainable Energy Reviews

    环科院  周明华、Tingyue Gu  https://www.sciencedirect.com/science/article/pii/S1364032118308220
    Biomaterials
    生科院/医学院  赵强、李宗金  
https://www.sciencedirect.com/science/article/pii/S014296121930047X
    生科院  孔德领  https://www.sciencedirect.com/science/article/pii/S0142961219305873
    生科院  孔德领、黄兴禄  https://www.sciencedirect.com/science/article/pii/S0142961219307343
    环科院  胡献刚  https://www.sciencedirect.com/science/article/pii/S0142961219301176
    环科院  胡献刚  https://www.sciencedirect.com/science/article/pii/S0142961219308701
    材料学院  杜亚平  https://www.sciencedirect.com/science/article/pii/S0142961219307690    (通讯作者)
    Chem. Mater.
    化学院  陈永胜  https://pubs.acs.org/doi/10.1021/acs.chemmater.8b04087
    材料学院  杜亚平  https://pubs.acs.org/doi/10.1021/acs.chemmater.9b02857    (通讯作者)
    Nano Energy
    材料学院  卜显和、王丹红  
https://www.sciencedirect.com/science/article/pii/S2211285519304367
    化学院  陈永胜  https://www.sciencedirect.com/science/article/pii/S2211285519305932
    化学院  陈永胜  https://www.sciencedirect.com/science/article/pii/S2211285519309231    (通讯作者)
    材料学院  梁嘉杰  https://www.sciencedirect.com/science/article/pii/S2211285519306056
    材料学院  杜亚平  https://www.sciencedirect.com/science/article/pii/S2211285519305130    (通讯作者)
    化学院  焦丽芳  
https://www.sciencedirect.com/science/article/pii/S221128551930521X
    化学院  牛志强  https://www.sciencedirect.com/science/article/pii/S221128551930919X    (通讯作者)
    电光学院  张晓丹  
https://www.sciencedirect.com/science/article/pii/S2211285519305257    (通讯作者)
    电光学院  张晓丹  
https://www.sciencedirect.com/science/article/pii/S221128551930254X    (通讯作者)
环境
    Applied Catalysis B: Environmental
    环科院  周明华  
https://www.sciencedirect.com/science/article/pii/S0926337318312281
    环科院  周明华  https://www.sciencedirect.com/science/article/pii/S0926337319306484
    环科院  周启星  https://www.sciencedirect.com/science/article/abs/pii/S0926337319311725
    环科院  展思辉  https://www.sciencedirect.com/science/article/pii/S0926337319307295
    环科院  鞠美庭  https://www.sciencedirect.com/science/article/pii/S0926337319303194
    环科院  漆新华  https://www.sciencedirect.com/science/article/pii/S092633731931255X    (通讯作者)
    环科院  Wenjie Li、Hongbin Yu  https://www.sciencedirect.com/science/article/abs/pii/S0926337319312792
    电光学院  王卫超  
https://www.sciencedirect.com/science/article/pii/S0926337319301158
    材料学院/化学院  王丹红、张明慧  https://www.sciencedirect.com/science/article/pii/S0926337319305508
    材料学院  袁忠勇  https://www.sciencedirect.com/science/article/abs/pii/S0926337319310987


生命科学和生物医学(Life sciences and Biomedicine)
    Thorax
    生科院  宁文  
https://thorax.bmj.com/content/early/2019/02/17/thoraxjnl-2018-211846    (通讯作者)
    Molecular Biology and Evolution
    泰达生物  王磊  
https://academic.oup.com/mbe/advance-article/doi/10.1093/molbev/msz241/5601619    (通讯作者)
    FEMS Microbiology Reviews
    泰达生物  王磊  https://academic.oup.com/femsre/advance-article/doi/10.1093/femsre/fuz028/5645236
    Nucleic Acids Research
    生科院  石建党  
https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz482/5506865
    药学院  于仲波  https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz464/5494778
    药学国重  刘林、吕鑫屹  https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkz594/5531184


工程技术(Technology)
    IEEE Transactions on Pattern Analysis and Machine Intelligence
    计算机学院  程明明  
https://ieeexplore.ieee.org/document/8821313
    计算机学院  程明明  https://ieeexplore.ieee.org/document/8850209    (通讯作者)
    计算机学院  杨巨峰  
https://ieeexplore.ieee.org/document/8703124
    IEEE Transactions on Neural Networks and Learning Systems
    计算机学院  杨巨峰  
https://ieeexplore.ieee.org/document/8736039
    人工智能学院  方勇纯  https://ieeexplore.ieee.org/document/8941307
    人工智能学院  孙宁  https://ieeexplore.ieee.org/document/8706985
    IEEE Transactions on Cybernetics
    计算机学院  徐君  
https://ieeexplore.ieee.org/document/8871334
    经济与社会发展研究院  肖建华  https://ieeexplore.ieee.org/document/8906244    (第一作者)

备注:按WOS大类领域,分为Arts and Humanities、Life sciences and Biomedicine、Physical Sciences、Social Sciences、Technology五大类。

作者: NKU    时间: 2019-2-12 09:19
本帖最后由 NKU 于 2020-1-1 19:40 编辑

部分专业一流期刊(IF<10),共120篇(2019.12.30,不定期更新,总数不含并列一作)

自然科学(Physical Sciences)
    数学与数理统计
    Annals of Statistics
    统计学院  邹长亮  http://web.stat.nankai.edu.cn/chlzou/AOS1711-049R1.pdf
    Biometrika
    统计学院  周永道  https://academic.oup.com/biomet/advance-article/doi/10.1093/biomet/asz043/5570080
    Geometric and Functional Analysis
    陈省身数学研究所  李琼玲  https://link.springer.com/article/10.1007/s00039-019-00491-7
    Advances in Mathematics
    陈省身数学研究所  常亮  https://www.sciencedirect.com/science/article/pii/S0001870819302555
    陈省身数学研究所  周麒  https://www.sciencedirect.com/science/article/pii/S0001870819301537
    数学科学学院  陈文雄  https://www.sciencedirect.com/science/article/pii/S0001870819305481    (天津市千人,讲座教授)
    物理
    Phys. Rev. Applied
    物理学院  陈树琪  https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.044086
    物理学院  陈树琪  https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.054012    (通讯作者)
    物理学院  许京军、蔡卫  https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.12.024057    (通讯作者)
    电光学院  程雅慧  
https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.11.034024
    Journal of High Energy Physics
    物理学院  王玉明  https://link.springer.com/article/10.1007/JHEP01%282019%29024    (通讯作者)
    物理学院  廖益  https://link.springer.com/article/10.1007/JHEP03%282019%29179
    物理学院  Ning Chen  https://link.springer.com/article/10.1007/JHEP03%282019%29023
    化学
    Chemical Science
    元素所  刘育  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc00026g
    元素所  刘育  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc02633a
    材料学院  卜显和、徐加良  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc02621e
    元素所  周其林  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc04177j
    元素所  陈弓、赵东兵  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc02182e
    元素所  周传政  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc03016f
    元素所  汪清民  https://pubs.rsc.org/en/content/articlelanding/2020/sc/c9Sc05132e     
    元素所  李鑫  
https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc05439h
    化学院  陈军  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc05178j
    化学院  肖乐辉  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc01666j
    化学院  张新歌  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc01841g
    化学院  谢微  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc03360b
    化学院  尹学博  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc03040a
    化学院  孔德明  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc02281c
    化学院  孔德明  
https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc05714a    (通讯作者)
    化学院  马建功  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc01892a    (通讯作者)
    材料学院  孙忠明  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc03948h
    药学院/元素所  李鲁远、席真  https://pubs.rsc.org/en/content/articlelanding/2019/sc/c8sc03781g    (通讯作者)
    材料科学
    Energy Storage Materials
    化学院  牛志强  https://www.sciencedirect.com/science/article/pii/S2405829719304817
    化学院  焦丽芳  https://www.sciencedirect.com/science/article/pii/S2405829719310396    (通讯作者)
    环境科学
    Environmental Science and Technology
    环科院  周启星  
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b05232
    环科院  周启星  https://pubs.acs.org/doi/10.1021/acs.est.9b03581
    环科院  陈威  https://pubs.acs.org/doi/10.1021/acs.est.9b00787
    环科院  陈威  https://pubs.acs.org/doi/10.1021/acs.est.9b04332
    环科院  史国良  https://pubs.acs.org/doi/abs/10.1021/acs.est.8b06524
    环科院  史国良、冯银厂  https://pubs.acs.org/doi/10.1021/acs.est.9b00181
    环科院  祝凌燕  https://pubs.acs.org/doi/10.1021/acs.est.8b07189
    环科院  祝凌燕  https://pubs.acs.org/doi/10.1021/acs.est.9b05258
    环科院  祝凌燕、Hanzhong Jia  https://pubs.acs.org/doi/10.1021/acs.est.9b01474
    环科院  胡献刚  https://pubs.acs.org/doi/10.1021/acs.est.9b04198
    环科院  胡献刚  
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b06023
    环科院  胡献刚  https://pubs.acs.org/doi/10.1021/acs.est.9b00088    (通讯作者)
    环科院  汪磊  https://pubs.acs.org/doi/10.1021/acs.est.9b02090
    环科院  王鑫  https://pubs.acs.org/doi/10.1021/acs.est.9b05290
    环科院  Mingzhu Li  https://pubs.acs.org/doi/10.1021/acs.est.8b06763    (第一作者)
    化学院  Hongju Da  https://pubs.acs.org/doi/10.1021/acs.est.8b06244    (第一作者)
    Water Research
    环科院  周启星  https://www.sciencedirect.com/science/article/abs/pii/S0043135419307614
    环科院  祝凌燕  https://www.sciencedirect.com/science/article/abs/pii/S0043135419309194
    环科院  胡献刚  https://www.sciencedirect.com/science/article/abs/pii/S0043135419311418
    环科院  周明华  https://www.sciencedirect.com/science/article/abs/pii/S0043135419300247
    环科院  周明华  https://www.sciencedirect.com/science/article/abs/pii/S0043135419301381
    环科院  张英  https://www.sciencedirect.com/science/article/abs/pii/S0043135419300892    (通讯作者)
    环科院  姚义鸣、孙红文  https://www.sciencedirect.com/science/article/abs/pii/S0043135419300636
    环科院/医学院  罗义、毛大庆  https://www.sciencedirect.com/science/article/abs/pii/S0043135419304221
    环科院/生科院  王莹莹,Mark Bartlam  https://www.sciencedirect.com/science/article/abs/pii/S0043135419307535
    环科院  李尧  https://www.sciencedirect.com/science/article/abs/pii/S0043135419304610
    环科院  李尧  https://www.sciencedirect.com/science/article/abs/pii/S004313541930572X
    环科院  QiurongZhang  https://www.sciencedirect.com/science/article/abs/pii/S0043135419306335    (第一作者)
    环科院 Taotao Lu  https://www.sciencedirect.com/science/article/abs/pii/S004313541930956X    (并列一作)
    Environment International
    环科院  汪磊  https://www.sciencedirect.com/science/article/pii/S0160412019301850
    环科院  汪磊  https://www.sciencedirect.com/science/article/pii/S016041201931952X
    环科院  祝凌燕  https://www.sciencedirect.com/science/article/pii/S0160412018329544
    环科院  祝凌燕  https://www.sciencedirect.com/science/article/pii/S0160412019317738
    环科院  祝凌燕  https://www.sciencedirect.com/science/article/pii/S0160412019332544
    环科院  祝凌燕  https://www.sciencedirect.com/science/article/pii/S0160412019326637
    环科院  孙红文  https://www.sciencedirect.com/science/article/pii/S0160412019318276
    环科院  孙红文  https://www.sciencedirect.com/science/article/pii/S0160412019320896
    环科院  孙红文  https://www.sciencedirect.com/science/article/pii/S0160412018322244    (通讯作者)
    Land Degradation & Development
    环科院  周启星  https://onlinelibrary.wiley.com/doi/10.1002/ldr.3459
    地学
    Journal of Geophysical Research: Atmospheres
    环科院  冯银厂  https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JD029976
    农学
    Agricultural and Forest Meteorology  (IF=4.189)
    生科院  古松  https://www.sciencedirect.com/science/article/pii/S0168192319300899
    J. Agric. Food Chem.
    元素所  范志金、赵斌  https://pubs.acs.org/doi/pdf/10.1021/acs.jafc.8b06054
    元素所  范志金、赵斌  https://pubs.acs.org/doi/pdf/10.1021/acs.jafc.8b06935
    元素所  范志金、李正名  https://pubs.acs.org/doi/10.1021/acs.jafc.9b05751
    元素所  范志金  https://pubs.acs.org/doi/10.1021/acs.jafc.9b03891    (通讯作者)
    元素所  汪清民、刘玉秀  https://pubs.acs.org/doi/abs/10.1021/acs.jafc.9b00657
    元素所  汪清民、刘玉秀  https://pubs.acs.org/doi/10.1021/acs.jafc.9b05547
    元素所  汪清民、刘玉秀  https://pubs.acs.org/doi/10.1021/acs.jafc.9b03699    (通讯作者)
    元素所  汪清民、刘玉秀  https://pubs.acs.org/doi/10.1021/acs.jafc.9b04093    (通讯作者)
    元素所  汪清民  https://pubs.acs.org/doi/abs/10.1021/acs.jafc.8b06859    (通讯作者)
    元素所  汪清民  https://pubs.acs.org/doi/10.1021/acs.jafc.9b06006    (通讯作者)
    元素所  徐效华  https://pubs.acs.org/doi/10.1021/acs.jafc.9b03109    (通讯作者)
    元素所  席真  https://pubs.acs.org/doi/10.1021/acs.jafc.9b02996
    元素所  席真  https://pubs.acs.org/doi/10.1021/acs.jafc.9b04844
    医学院  王硕  https://pubs.acs.org/doi/10.1021/acs.jafc.9b02211
    医学院  王硕  https://pubs.acs.org/doi/10.1021/acs.jafc.9b01063    (通讯作者)


生命科学和生物医学(Life sciences and Biomedicine)
    Leukemia  (IF=9.944)
    医学院  赵明峰  https://www.nature.com/articles/s41375-019-0610-x
    Cancer Immunology Research (IF = 8.619)
    医学院  杨荣存  https://cancerimmunolres.aacrjournals.org/content/7/5/813
    Cancer Research  (IF=8.378)
    药学院  孙涛  http://cancerres.aacrjournals.org/content/early/2019/02/13/0008-5472.CAN-18-2238
    Clin Cancer Res (IF=8.911)
    生科院  龙加福  https://clincancerres.aacrjournals.org/content/25/18/5595    (通讯作者)
    Plos Biology  (IF=8.386)
    生科院  沈月全、杨雪  https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000096
    Cell Death and Differentiation  (IF=8.086)
    生科院  陈佺、朱玉山  https://www.nature.com/articles/s41418-019-0396-4
    Cell Report (IF=7.815)
    生科院  沈月全  
https://www.sciencedirect.com/science/article/pii/S2211124719300312   
    生科院  刘林  https://www.sciencedirect.com/science/article/pii/S2211124719315712
    The Plant Journal (IF=5.726)
    生科院/药学院  沈月全、王小强  https://onlinelibrary.wiley.com/doi/10.1111/tpj.14321
   

工程技术(Technology)   
    Automatica
    人工智能学院  方勇纯  https://www.sciencedirect.com/science/article/pii/S0005109818306083
    IEEE Transactions on Automatic Control
    人工智能学院  倪元华  https://ieeexplore.ieee.org/document/8777161


社会科学(Social Sciences)
    Management Science
    金融学院 贺佳  https://pubsonline.informs.org/doi/10.1287/mnsc.2018.3198
    The Review of Financial Studies
    金融学院  贺佳  https://academic.oup.com/rfs/article-abstract/32/10/3958/5305593
    Journal of Empirical Finance
    金融学院  程婷婷  https://www.sciencedirect.com/science/article/abs/pii/S0927539818300860
    Journal of International Money and Finance
    金融学院  夏天  https://www.sciencedirect.com/science/article/pii/S0261560619302116
    Corporate Social Responsibility and Environmental Management
    中国公司治理研究院 王励翔  https://onlinelibrary.wiley.com/doi/10.1002/csr.1864
    Journal of the Academy of Marketing Science
    商学院  任星耀  https://link.springer.com/article/10.1007/s11747-019-00681-7
    Omega
    商学院  方磊  https://www.sciencedirect.com/science/article/pii/S0305048318312775
    经发院  李响  https://www.sciencedirect.com/science/article/pii/S0305048318314579
    经发院 庞瑞芝  https://www.sciencedirect.com/science/article/pii/S0305048319300702
    Tourism Management
    旅游学院  李辉  https://www.sciencedirect.com/science/article/pii/S0261517719300184
    旅游学院  李春晓  https://www.sciencedirect.com/science/article/abs/pii/S0261517719302249    (通讯作者)
    旅游学院  张柔然  https://www.sciencedirect.com/science/article/pii/S0261517719300536
    旅游学院  陈晔、张坤  https://www.sciencedirect.com/science/article/pii/S0261517719301384
    旅游学院  Mei Ling Dai  https://www.sciencedirect.com/science/article/pii/S0261517719301554
    旅游学院 Jian-Wu Bi  https://www.sciencedirect.com/science/article/abs/pii/S0261517719302043    (第一作者)
    经济学院  李惠璠  https://www.sciencedirect.com/science/article/abs/pii/S0261517719302237
    Annals of Tourism Research
    旅游学院  梁赛  https://www.sciencedirect.com/science/article/abs/pii/S0160738319300283  (第一作者)
    旅游学院  李春晓  https://www.sciencedirect.com/science/article/abs/pii/S0160738319300039
    Climate Policy
    环科院  王军锋  https://www.tandfonline.com/doi/abs/10.1080/14693062.2019.1664381


艺术与人文科学(Arts and Humanities)
    Journal of Contemporary Central and Eastern Europe
    历史学院  Srđan Mladenov Jovanović  https://tandfonline.com/doi/full/10.1080/25739638.2019.1694256
    Journal of Cultural Heritage
    博物馆  Jingwen Zhang  https://www.sciencedirect.com/science/article/abs/pii/S1296207418302668

作者: NKU    时间: 2019-2-12 09:19
占楼待编辑
作者: NKU    时间: 2019-2-12 09:20
占楼待编辑
作者: NKU    时间: 2019-2-14 19:35
本帖最后由 NKU 于 2019-2-14 21:36 编辑

南开大学元素有机化学研究所王晓晨研究员ANGEWANDTE,通讯作者:王晓晨
Angew. Chem. Int. Ed.,DOI: 10.1002/anie.201900907 , First published: 14 February 2019

https://onlinelibrary.wiley.com/doi/10.1002/anie.201900907

Spiro Bicyclic Bisborane Catalysts for Metal-Free Chemoselective and Enantioselective Hydrogenation of Quinolines
Xiang Li,# Jun-Jie Tian,# Ning Liu, Xian-Shuang Tu, Ning-Ning Zeng, and Xiao-Chen Wang*

X. Li,# J.-J. Tian,# N. Liu, X.-S. Tu, N.-N. Zeng, Prof. Dr. X.-C. Wang
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University 94 Weijin Road, Tianjin 300071 (China)
E-mail: xcwang@nankai.edu.cn                                         
Homepage: http://www.wangnankai.com/

[#] These authors contributed equally to this work.

Dedicated to the 100th anniversary of Nankai University


Abstract: We have prepared a new series of spiro bicyclic bisborane catalysts by means of hydroboration reactions of C2-symmetric spiro bicyclic dienes with HB(C6F5)2 and HB(p-C6F4H)2. When used for hydrogenation of quinolines, these catalysts gave excellent yields and enantiomeric excesses and showed turnover numbers up to 460. The most attractive feature of these metal-free hydrogenation reactions was the broad functional group tolerance, making this method complementary to existing methods for quinoline hydrogenation.


作者: NKU    时间: 2019-2-15 19:33

物理科学学院陈树琪教授Advanced Materials,通讯作者:陈树琪

Advanced Materials Early View First published: 14 February 2019 10.1002/adma.201802458

https://onlinelibrary.wiley.com/doi/10.1002/adma.201802458


From Single-Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces

Shuqi Chen,* Zhancheng Li, Wenwei Liu, Hua Cheng, and Jianguo Tian

Prof. S. Chen, Dr. Z. Li, Dr. W. Liu, Prof. H. Cheng, Prof. J. Tian

The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Institute of Applied Physics, Nankai University, Tianjin 300071, China

E-mail: schen@nankai.edu.cn

Prof. S. Chen, Prof. H. Cheng, Prof. J. Tian

The Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China


Abstract

Metasurfaces, 2D artificial arrays of subwavelength elements, have attracted great interest from the optical scientific community in recent years because they provide versatile possibilities for the manipulation of optical waves and promise an effective way for miniaturization and integration of optical devices. In the past decade, the main efforts were focused on the realization of single‐dimensional (amplitude, frequency, polarization, or phase) manipulation of optical waves. Compared to the metasurfaces with single‐dimensional manipulation, metasurfaces with multidimensional manipulation of optical waves show significant advantages in many practical application areas, such as optical holograms, sub‐diffraction imaging, and the design of integrated multifunctional optical devices. Nowadays, with the rapid development of nanofabrication techniques, the research of metasurfaces has been inevitably developed from single‐dimensional manipulation toward multidimensional manipulation of optical waves, which greatly boosts the application of metasurfaces and further paves the way for arbitrary design of optical devices. Herein, the recent advances in metasurfaces are briefly reviewed and classified from the viewpoint of different dimensional manipulations of optical waves. Single‐dimensional manipulation and 2D manipulation of optical waves with metasurfaces are discussed systematically. In conclusion, an outlook and perspectives on the challenges and future prospects in these rapidly growing research areas are provided.




作者: NKU    时间: 2019-2-15 19:34

生命科学学院丁丹研究员Nature Communications,通讯作者:丁丹,Ben Zhong Tang

Nature Communications volume 10, Article number: 768 (2019) 10.1038/s41467-019-08722-z

https://www.nature.com/articles/s41467-019-08722-z

南开共同通讯&并列一作


Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles

Zheng Zhao, Chao Chen, Wenting Wu, Fenfen Wang, Lili Du, Xiaoyan Zhang, Yu Xiong, Xuewen He, Yuanjing Cai, Ryan T. K. Kwok, Jacky W. Y. Lam, Xike Gao, Pingchuan Sun, David Lee Phillips, Dan Ding* & Ben Zhong Tang*


Affiliations

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China

Zheng Zhao, Xuewen He, Yuanjing Cai, Ryan T. K. Kwok, Jacky W. Y. Lam & Ben Zhong Tang

State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China

Chao Chen, Xiaoyan Zhang & Dan Ding

Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Road, Shanghai, 200032, China

Wenting Wu & Xike Gao

Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China

Fenfen Wang & Pingchuan Sun

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 000000, China

Lili Du & David Lee Phillips

Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, China

Lili Du

Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China

Yu Xiong & Ben Zhong Tang

These authors contributed equally: Zheng Zhao, Chao Chen, Wenting Wu.

Correspondence to Dan Ding or Ben Zhong Tang.


Abstract

The exciting applications of molecular motion are still limited and are in urgent pursuit, although some fascinating concepts such as molecular motors and molecular machines have been proposed for years. Utilizing molecular motion in a nanoplatform for practical application has been scarcely explored due to some unconquered challenges such as how to achieve effective molecular motion in the aggregate state within nanoparticles. Here, we introduce a class of near infrared-absorbing organic molecules with intramolecular motion-induced photothermy inside nanoparticles, which enables most absorbed light energy to dissipate as heat. Such a property makes the nanoparticles a superior photoacoustic imaging agent compared to widely used methylene blue and semiconducting polymer nanoparticles and allow them for high-contrast photoacoustic imaging of tumours in live mice. This study not only provides a strategy for developing advanced photothermal/photoacoustic imaging nanoagents, but also enables molecular motion in a nanoplatform to find a way for practical application.




作者: White_black    时间: 2019-2-16 12:19
这是网大登录不了吗
作者: NKU    时间: 2019-2-16 12:54
White_black 发表于 2019-2-16 12:19
这是网大登录不了吗

对的,网大挂了半个月了吧
作者: lygxia    时间: 2019-2-18 13:52
NKU 发表于 2019-2-16 12:54
对的,网大挂了半个月了吧

被黑了么?还是啥原因
作者: NKU    时间: 2019-2-18 18:39
本帖最后由 NKU 于 2019-2-18 18:49 编辑
lygxia 发表于 2019-2-18 13:52
被黑了么?还是啥原因

应该是没有人维护了吧。具体不是很清楚。如果有人维护,论坛应该早就修好了

应该把浙大academic818叫回来繁荣一下NCKU,哈哈

作者: NKU    时间: 2019-2-18 18:48
南开大学元素有机化学研究所刘育课题组Advanced Materials,通讯作者:刘育
Advanced Materials Early View First published: 18 February 2019 10.1002/adma.201806158
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806158


Cyclodextrin-Based Multistimuli-Responsive Supramolecular Assemblies and Their Biological Functions
Ying-Ming Zhang, Yao-Hua Liu, and Yu Liu*

Dr. Y.-M. Zhang, Y.-H. Liu, Prof. Y. Liu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
E-mail: yuliu@nankai.edu.cn
Prof. Y. Liu
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

Abstract
Cyclodextrins (CDs), which are a class of cyclic oligosaccharides extracted from the enzymatic degradation of starch, are often utilized in molecular recognition and assembly constructs, primarily via host–guest interactions in water. In this review, recent progress in CD‐based supramolecular nanoassemblies that are sensitive to chemical, biological, and physical stimuli is updated and reviewed, and intriguing examples of the biological functions of these nanoassemblies are presented, including pH‐ and redox‐responsive drug and gene delivery, enzyme‐activated specific cargo release, photoswitchable morphological interconversion, microtubular aggregation, and cell–cell communication, as well as a geomagnetism‐controlled nanosystem for the suppression of tumor invasion and metastasis. Moreover, future perspectives and challenges in the fabrication of intelligent CD‐based biofunctional materials are also discussed at the end of this review, which is expected to promote the translational development of these nanomaterials in the biomedical field.

作者: NKU    时间: 2019-2-18 18:48
南开大学化学学院陈永胜课题组Advanced Materials,通讯作者:陈永胜
Advanced Materials Early View First published: 18 February 2019 10.1002/adma.201805843
https://onlinelibrary.wiley.com/doi/10.1002/adma.201805843


Integrated Perovskite/Bulk-Heterojunction Organic Solar Cells
Yongsheng Liu and Yongsheng Chen*
Prof. Y. Liu, Prof. Y. Chen
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
E-mail: yschen99@nankai.edu.cn

Abstract
The recently emerged integrated perovskite/bulk‐heterojunction (BHJ) organic solar cells (IPOSCs) without any recombination layers have generated wide attention. This type of device structure can take the advantages of tandem cells using both perovskite solar and near‐infrared (NIR) BHJ organic solar materials for wide‐range sunlight absorption and the simple fabrication of single junction cells, as the low bandgap BHJ layer can provide additional light harvesting in the NIR region and the high open‐circuit voltage can be maintained at the same time. This progress report highlights the recent developments in such IPOSCs and the possible challenges ahead. In addition, the recent development of perovskite solar cells and NIR organic solar cells is also covered to fully underline the importance and potential of IPOSCs.

作者: NKU    时间: 2019-2-18 22:59
本帖最后由 NKU 于 2019-2-20 07:12 编辑

今年百年校庆,南开可能在Adv. Mater.上发表special issue?目前已知发表三篇review一篇progress report,不过都是invited。
刘育(有机/物化),陈永胜(高分子/纳米),卜显和(无机),陈树琪(物理),按道理学校不太鼓励发review的,毕竟不是原创性成果,突然这么密集发表,有点奇怪。
http://mse.nankai.edu.cn/xjl/list.htm
作者: NKU    时间: 2019-2-19 21:13
南开大学材料科学与工程学院卜显和课题组Angewandte Chemie International Edition,通讯作者:卜显和、许健
Angewandte Chemie International Edition Accepted Articles First published: 19 February 2019 10.1002/anie.201900190
https://onlinelibrary.wiley.com/doi/10.1002/anie.201900190


A Dual-Stimuli-Responsive Coordination Network Featuring a Reversible Wide-Range Luminescence Tuning Behavior
Zhao-Quan Yao, Jian Xu,* Bo Zou, Zhenpeng Hu, Kai Wang, Yi-Jia Yuan, Ya-Ping Chen, Rui Feng, Jian-Bo Xiong, Jialei Hao, and Xian-He Bu*
Dr. Z.-Q. Yao, Y.-J. Yuan, R. Feng, J.-B. Xiong, Prof. X.-H. Bu
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
E-mail: buxh@nankai.edu.cn
Dr. Z.-Q. Yao, Dr. J. Xu, R. Feng, J.-B. Xiong, Prof. X.-H. Bu
School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
E-mail: jxu@nankai.edu.cn
Prof. B. Zou, Dr. K. Wang, Y.-P. Chen
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
Prof. Z. Hu, J. Hao
School of Physics, Nankai University, Tianjin 300071, China.
Prof. X.-H. Bu
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.

Abstract
We herein report a new coordination network that deforms in a smooth and reversible manner under either thermal or pressure stimulation. Concomitantly, the organic fluorophores coordinatively bound to the channel in a face‐to‐face arrangement respond to this structural deformation by finely adapting their conformation and arrangement. As a result, the material exhibits a remarkable dual‐stimuli‐responsive luminescence shift across almost the entire visible region: The emission color of the crystal gradually changes from cyan to green by heating and then to red by pressure compression. Furthermore, each stage exhibits a linear dependence of both the emission maximum and intensity on stimulus and is fully

作者: NKU    时间: 2019-2-23 15:05
化学学院程鹏课题组Advanced Materials,通讯作者:师唯,程鹏
Advanced Materials Early View First published: 21 February 2019 10.1002/adma.201805871
https://onlinelibrary.wiley.com/doi/10.1002/adma.201805871

Multicenter Metal–Organic Framework-Based Ratiometric Fluorescent Sensors
Shuangyan Wu, Hui Min, Wei Shi,* and Peng Cheng* DOI: 10.1002/adma.201805871
Dr. S. Wu, H. Min, Prof. W. Shi, Prof. P. Cheng
Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
E-mail: shiwei@nankai.edu.cn; pcheng@nankai.edu.cn
Prof. P. Cheng
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
作者: NKU    时间: 2019-2-23 15:05
材料科学与工程学院卜显和课题组Coordination Chemistry Reviews,通讯作者:胡同亮,卜显和
Coordination Chemistry Reviews, Volume 387, 15 May 2019, Pages 79-120
https://www.sciencedirect.com/sc ... i/S001085451830599X

Metal-organic framework-based heterogeneous catalysts for the conversion of C1 chemistry: CO, CO2 and CH4
Wen-Gang Cui a, Guo-Ying Zhang b, Tong-Liang Hu ac*, Xian-He Bu ad*
a School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
b Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Ministry of Education), College of Chemistry, Tianjin Normal University, Tianjin 300387, China
c Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
d State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
* Corresponding authors.
tlhu@nankai.edu.cn
buxh@nankai.edu.cn
作者: NKU    时间: 2019-2-23 15:06
生命科学学院杨志谋课题组Nano Lett.,通讯作者:王恺,高洁,杨志谋
Nano Lett., Just Accepted Publication Date (Web): February 21, 2019 (Communication) DOI: 10.1021/acs.nanolett.8b04406
https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b04406

Supramolecular Nanofibers with Superior Bioactivity to IGF-1
Yuna Shang,†,♯ Dengke Zhi,†,♯ Guowei Feng,‡ Zhongyan Wang,† Duo Mao,§ Shuang Guo,† Ruihua Liu,† Lulu Liu,† Shuhao Zhang,† Shenghuan Sun,† Kai Wang,*,†, Deling Kong,† Jie Gao*,† & Zhimou Yang*,†,∮
†Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, P. R. China
‡Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P. R. China
§Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore, 117585
∮Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
*Corresponding Authors: yangzm@nankai.edu.cn (phone: +86 22 23502875);
chemgaojie@nankai.edu.cn; wangkai@nankai.edu.cn
作者: NKU    时间: 2019-2-23 15:06
南开大学化学学院程鹏课题组赵斌教授ANGEWANDTE,通讯作者:Han-Shi Hu,Nikolas Kaltsoyannis,赵斌
Angewandte Chemie International Edition,DOI:10.1002/anie.201901786,First published: 21 February 2019
https://www.onlinelibrary.wiley.com/doi/10.1002/anie.201901786

High Uptake of ReO4− by a Radiation Resistant [Th48Ni6] Nanocage-Based Metal−Organic Framework
Hang Xu,[a] Chun-Shuai Cao,[a] Han-Shi Hu,*[b,c] Shi-Bin Wang,[b Jin-Cheng Liu,[b Peng Cheng,[a]Nikolas Kaltsoyannis,*[c] Jun Li,b] Bin Zhao*[a]

a] Dr. H. Xu, Dr. C.-S. Cao, Prof. Dr. P. Cheng, Prof. Dr. B. Zhao
Department of Chemistry,Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin, 300071, China
E-mail: zhaobin@nankai.edu.cn
b]Prof. Dr. H.-S. Hu, Dr. W.-S. Bin, Mr. J. C. Liu, Prof. Dr. J. Li
Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University,Beijing 100084, China
E-mail: hshu@mail.tsinghua.edu.cn
c] Prof. Dr. H.-S. Hu, Prof. Dr. N. Kaltsoyannis
School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
E-mail: nikolas.kaltsoyannis@manchester.ac.uk
作者: NKU    时间: 2019-3-5 22:19
药物化学生物学国家重点实验室陈佺课题组NAT COMMUN,通讯作者:马彪(博士后)、朱玉山、陈佺
Nature Communications, volume 10, Article number: 1034 (2019),DOI:10.1038/s41467-019-08618-y,Published: 04 March 2019
https://www.nature.com/articles/s41467-019-08618-y

The SIAH2-NRF1 axis spatially regulates tumor microenvironment remodeling for tumor progression
Biao Ma1, Hongcheng Cheng1, Chenglong Mu1, Guangfeng Geng1, Tian Zhao1, Qian Luo1, Kaili Ma1,Rui Chang1, Qiangqiang Liu1, Ruize Gao1, Junli Nie1, Jiaying Xie1, Jinxue Han1, Linbo Chen1, Gui Ma1, Yushan Zhu1 & Quan Chen1,2

1 State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China.
2 State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. These authors contributed equally: Biao Ma, Hongcheng Cheng. These authors jointly supervised this work: Biao Ma, Yushan Zhu, Quan Chen. Correspondence and requests for materials should be addressed to B.M. (email: biaoma@mail.nankai.edu.cn) or to Y.Z. (email: zhuys@nankai.edu.cn) or to Q.C. (email: chenq@ioz.ac.cn)

Abstract


The interactions between tumor cells with their microenvironments, including hypoxia, acidosis and immune cells, lead to the tumor heterogeneity which promotes tumor progression. Here, we show that SIAH2-NRF1 axis remodels tumor microenvironment through regulating tumor mitochondrial function, tumor-associated macrophages (TAMs) polarization and cell death for tumor maintenance and progression. Mechanistically, low mitochondrial gene expression in breast cancers is associated with a poor clinical outcome. The hypoxia-activated E3 ligase SIAH2 spatially downregulates nuclear-encoded mitochondrial gene expression including pyruvate dehydrogenase beta via degrading NRF1 (Nuclear Respiratory Factor 1) through ubiquitination on lysine 230, resulting in enhanced Warburg effect, metabolic reprogramming and pro-tumor immune response. Dampening NRF1 degradation under hypoxia not only impairs the polarization of TAMs, but also promotes tumor cells to become more susceptible to apoptosis in a FADD-dependent fashion, resulting in secondary necrosis due to the impairment of efferocytosis. These data represent that inhibition of NRF1 degradation is a potential therapeutic strategy against cancer.
作者: NKU    时间: 2019-3-5 22:23
材料科学与工程学院周震教授共同通讯Advanced Functional Materials,通讯作者:Dianzeng Jia,周震
Advanced Functional Materials Early View First published: 27 February 2019 10.1002/adfm.201807895
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201807895
南开共同通讯&并列一作

LiFePO4 Particles Embedded in Fast Bifunctional Conductor rGO&C@Li3V2(PO4)3 Nanosheets as Cathodes for High-Performance Li-Ion Hybrid Capacitors
Yue Zhang, Zihe Zhang, Yakun Tang, Dianzeng Jia,* Yudai Huang, Weikong Pang, Zaiping Guo, and Zhen Zhou*
Y. Zhang, Dr. Y. K. Tang, Prof. D. Z. Jia, Prof. Y. D. Huang
Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang, China
E-mail: jdz@xju.edu.cn
Z. Zhang, Prof. Z. Zhou
School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Renewable Energy Conversion and Storage Center (ReCast), Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300350, China
E-mail: zhouzhen@nankai.edu.cn
Dr. W. K. Pang, Prof. Z. P. Guo
Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522, Australia
Prof. Z. Zhou
School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
Y.Z. and Z.H.Z. contributed equally to this work.
作者: NKU    时间: 2019-3-5 22:24
元素有机化学研究所朱守非教授J. Am. Chem. Soc.,通讯作者:朱守非
J. Am. Chem. Soc., Just Accepted Publication Date (Web): February 27, 2019 (Communication) DOI: 10.1021/jacs.9b02127
https://pubs.acs.org/doi/abs/10.1021/jacs.9b02127

Iron-Catalyzed Dihydrosilylation of Alkynes: Efficient Access to Geminal Bis(silanes)
Meng-Yang Hu,1 Jie Lian,1 Wei Sun,1 Tian-Zhang Qiao,1 and Shou-Fei Zhu*,1
1 State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
Corresponding Author
* sfzhu@nankai.edu.cn

作者: NKU    时间: 2019-3-5 22:24
化学学院焦丽芳教授Advanced Materials,通讯作者:焦丽芳
Advanced Materials Early View First published: 27 February 2019 10.1002/adma.201806304
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806304

Binder-Free Electrodes for Advanced Sodium-Ion Batteries
Ting Jin, Qingqing Han, and Lifang Jiao*
Dedicated to the 100th anniversary of Nankai University

Dr. T. Jin, Q. Han, Prof. L. Jiao
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
E-mail: jiaolf@nankai.edu.cn
作者: NKU    时间: 2019-3-5 22:25
化学学院李福军研究员Advanced Energy Materials,通讯作者:李福军
Advanced Energy Materials Early View First published: 27 February 2019 10.1002/aenm.201900022
https://onlinelibrary.wiley.com/doi/10.1002/aenm.201900022

A High-Power Na3V2(PO4)3-Bi Sodium-Ion Full Battery in a Wide Temperature Range
Chenchen Wang, Dongfeng Du, Mingming Song, Yunhai Wang, and Fujun Li*
C. Wang, D. Du, M. Song, Prof. F. Li
Key Laboratory of Advanced Energy Materials Chemistry, (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
E-mail: fujunli@nankai.edu.cn
Prof. Y. Wang
Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
作者: NKU    时间: 2019-3-5 22:25
物理科学学院陈树琪教授,程化副教授Phys. Rev. Lett.,通讯作者:程化,陈树琪
Phys. Rev. Lett. Accepted 25 February 2019
https://journals.aps.org/prl/acc ... f750dfb74efe229a951
http://chenlab.nankai.edu.cn/My%20published%20paper/prl2019.pdf

Experimental realization of Type-II Weyl points and Fermi arcs in phononic crystal
Boyang Xie1, Hui Liu1, Hua Cheng1;3, Zhengyou Liu2, Shuqi Chen1;3;4,y and Jianguo Tian1;3;4
1 The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Institute of Applied Physics, Nankai University, Tianjin 300071, China
2 Key Laboratory of Arti cial Micro- and Nanostructures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
3 The collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China and
4 Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
 hcheng@nankai.edu.cn
y schen@nankai.edu.cn
作者: NKU    时间: 2019-3-5 22:25
材料科学与工程学院梁嘉杰课题组Advanced Energy Materials,通讯作者:梁嘉杰
Advanced Energy Materials Early View First published: 25 February 2019 10.1002/aenm.201803987
https://onlinelibrary.wiley.com/doi/10.1002/aenm.201803987

Hydrous RuO2-Decorated MXene Coordinating with Silver Nanowire Inks Enabling Fully Printed Micro-Supercapacitors with Extraordinary Volumetric Performance
Hongpeng Li, Xiran Li, Jiajie Liang,* and Yongsheng Chen
H. Li, X. Li, Prof. J. Liang, Prof. Y. Chen
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
E-mail: liang0909@nankai.edu.cn
Prof. J. Liang, Prof. Y. Chen
Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300350, P. R. China
Prof. J. Liang
Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300350, P. R. China
作者: NKU    时间: 2019-3-5 22:26
化学学院袁直教授Nano Lett.,通讯作者:袁直
Nano Lett., Just Accepted Publication Date (Web): February 25, 2019 (Communication) DOI: 10.1021/acs.nanolett.8b04645
https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b04645

Reversible shielding between dual ligands for enhanced tumor accumulation of ZnPc-loaded micelles
Jing Cao,† Xuefeng Gao,† Mingbo Cheng,† Xiaoyan Niu,† Xiaomin Li,† Yapei Zhang,† Yang Liu,† Wei Wang,† Zhi Yuan*,†,‡
†Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
‡Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
Corresponding Author
*Email: zhiy@nankai.edu.cn.
作者: NKU    时间: 2019-3-9 08:51
元素有机化学研究所梁广鑫教授Angewandte Chemie International Edition,通讯作者:梁广鑫
Angewandte Chemie International Edition Accepted Articles First published: 05 March 2019 10.1002/anie.201902043
https://onlinelibrary.wiley.com/doi/10.1002/anie.201902043

Total synthesis of (−)-Indoxamycins A and B
Naifeng Hu, Changming Dong, Cuifang Zhang, Guangxin Liang*
State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071 (China)
E-mail: lianggx@nankai.edu.cn
作者: NKU    时间: 2019-3-9 08:51
药学院和药物化学生物学国家重点实验室刘遵峰教授Advanced Functional Materials,通讯作者:刘遵峰
Advanced Functional Materials Early View First published: 07 March 2019 10.1002/adfm.201808241
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808241

Moisture Sensitive Smart Yarns and Textiles from Self-Balanced Silk Fiber Muscles
Tianjiao Jia, Yang Wang, Yuanyuan Dou, Yaowang Li, Monica Jung de Andrade, Run Wang, Shaoli Fang, Jingjing Li, Zhou Yu, Rui Qiao, Zhuangjian Liu, Yuan Cheng, Yewang Su, Majid Minary-Jolandan, Ray H. Baughman, Dong Qian, and Zunfeng Liu*
T. Jia, Y. Dou, J. Li, Prof. Z. Liu
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Pharmacy, Nankai University, Tianjin 300071, China
E-mail: liuzunfeng@nankai.edu.cn
Y. Wang, Prof. D. Qian, Prof. M. Minary-Jolandan
Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
Dr. Y. Li
School of Life Sciences, Tsinghua University, Beijing 100084, China
Dr. M. Jung de Andrade, Dr. S. Fang, Prof. R. H. Baughman
Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
R. Wang
College of Electronic Information and Optics Engineering, Nankai University, Tianjin 300071, China
Z. Yu, Prof. R. Qiao
Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
Prof. Z. Liu, Prof. Y. Cheng
Institute of High Performance Computing, Agency for Science Technology and Research (A*STAR), Singapore 138632, Singapore
Prof. Y. Su
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
Prof. Y. Su
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Prof. Y. Su
Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
作者: NKU    时间: 2019-3-9 08:52
医学院王悦冰副教授,生命科学学院丁丹研究员,李宗金教授合作ACS Nano,通讯作者:王悦冰,丁丹,李宗金
ACS Nano, Just Accepted Publication Date (Web): March 7, 2019 (Article) DOI: 10.1021/acsnano.8b09776
https://pubs.acs.org/doi/abs/10.1021/acsnano.8b09776

In Vivo Real-Time Imaging of Extracellular Vesicles in Liver Regeneration via Aggregation-Induced Emission Luminogens
Hongmei Cao, †, ∞ Zhiwei Yue, †, ∞ Heqi Gao, ‡ Chao Chen, ‡ Kaige Cui, † Kaiyue Zhang,† Yuanqiu Cheng, † Guoqiang Shao, § Deling Kong, ‡ Zongjin Li, *, † Dan Ding,

*, ‡ Yuebing Wang, *, †
† Nankai University School of Medicine, Tianjin 300071, China
‡ The Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, The College of Life Science, Tianjin 300071, China
§ Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
∞ H.M.C. and Z.W.Y. contributed equally to this work.
Corresponding Authors:
*E-mail: wangyuebing@nankai.edu.cn (Yuebing Wang)
*E-mail: dingd@nankai.edu.cn (Dan Ding)
*E-mail: zongjinli@nankai.edu.cn (Zongjin Li)
作者: NKU    时间: 2019-3-9 08:52
元素有机化学研究所刘育课题组Angewandte Chemie International Edition,通讯作者:刘育
Angewandte Chemie International Edition Accepted Articles First published: 07 March 2019 10.1002/anie.201901882
https://onlinelibrary.wiley.com/doi/10.1002/anie.201901882

Efficient Room-Temperature Phosphorescence of Solid-State Supramolecule Enhanced by Cucurbit[6]uril
Zhi-Yuan Zhang,[a] Yong Chen,[a] and Yu Liu,*[a] [bb]
[a]Z.-Y. Zhang, Dr. Y. Chen, Prof. Dr. Y. Liu
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
E-mail: yuliu@nankai.edu.cn
[bb]Prof. Dr. Y. Liu
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300072, China
作者: csou2018    时间: 2019-3-15 05:44
https://mp.weixin.qq.com/s/4LZdDiVDJ8dDNA1UtPVe1Q
作者: NKU    时间: 2019-3-16 13:50
医学院和附属第一中心医院赵明峰主任医师、教授Leukemia,Document Type:  Letter
Leukemia (2019) 10.1038/s41375-019-0437-5
https://www.nature.com/articles/s41375-019-0437-5
作者: NKU    时间: 2019-3-16 13:56
化学学院张新星研究员Nature Communications,通讯作者:Kit H. Bowen,张新星
Nature Communications volume 10, Article number: 1170 (2019) 10.1038/s41467-019-09154-5
https://www.nature.com/articles/s41467-019-09154-5

Intramolecular electron-induced proton transfer and its correlation with excited-state intramolecular proton transfer
Wei Wang, Mary Marshall, Evan Collins, Sara Marquez, Chaonan Mu, Kit H. Bowen* & Xinxing Zhang*
Affiliations
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 300071, Tianjin, China
Wei Wang, Chaonan Mu & Xinxing Zhang
Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
Mary Marshall, Evan Collins, Sara Marquez & Kit H. Bowen
Correspondence to Kit H. Bowen or Xinxing Zhang.
作者: NKU    时间: 2019-3-16 13:56
材料科学与工程学院卜显和课题组Coordin. Chem. Rev.,通讯作者:卜显和
Coordination Chemistry Reviews,DOI:10.1016/j.ccr.2019.02.029, A-vailable online 12 March 2019.

https://www.sciencedirect.com/sc ... i/S001085451830609X

Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries

Ming Zhonga,Lingjun Konga,Na Lia,Ying-Ying Liua,Jian Zhua,Xian-He Buabc
a
School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin 300350, PR China
b
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and College of Chemistry, Nankai University, Tianjin 300071, PR China
c
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300072, PR China
作者: NKU    时间: 2019-3-16 13:56
元素有机化学研究所刘育教授JACS,通讯作者:刘育、J. Fraser Stoddart
J. Am. Chem. Soc., Just Accepted Manuscript,DOI: 10.1021/jacs.8b13675,Publication Date (Web): March 12, 2019
https://pubs.acs.org/doi/10.1021/jacs.8b13675

In Situ Photoconversion of Multicolor Luminescence and Pure White Light Emission Based on Carbon Dot-Supported Supramolecular Assembly
Huang Wu,‡,† Yong Chen,‡ Xianyin Dai,‡ Peiyu Li,‡ J. Fraser Stoddart*,†,∇,║ and Yu Liu*,‡,§ ‡College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, P.R. China
†Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
∇School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
║Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P.R. China
§Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
*E-mail: stoddart@northwestern.edu
*E-mail: yuliu@nankai.edu.cn
作者: NKU    时间: 2019-3-16 13:57
化学学院和生命科学学院、香港科技大学合作JACS,通讯作者:史林启、丁丹、唐本忠
J. Am. Chem. Soc., Just Accepted Manuscript,DOI: 10.1021/jacs.8b13889,Publication Date (Web): March 13, 2019
https://pubs.acs.org/doi/10.1021/jacs.8b13889

Moleculer Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics

Shunjie Liu,†,# Xin Zhou,ǁ,‡# Haoke Zhang,† Hanlin Ou,‡,┴ Jacky W. Y. Lam,† Yang Liu,┴ Linqi Shi,*,┴ Dan Ding,*,‡,┴,§ Ben Zhong Tang*,†,§

†Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
ǁDepartment of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
‡Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
┴State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Edu- cation, and College of Chemistry, Nankai University, Tianjin 300071, China
§Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
作者: NKU    时间: 2019-3-16 13:57
化学学院程鹏课题组Coordination Chemistry Reviews,通讯作者:师唯,程鹏
Coordination Chemistry Reviews, Volume 388, 1 June 2019, Pages 293-309
https://www.sciencedirect.com/sc ... i/S0010854518306313

Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries
Lin Zhang, Hongwen Liu, Wei Shi*, Peng Cheng*
Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
*shiwei@nankai.edu.cn
*pcheng@nankai.edu.cn
作者: NKU    时间: 2019-3-25 21:02
环境科学与工程学院展思辉教授ANGEWANDTE,通讯作者:展思辉
Angew. Chem. Int. Ed. , First published: 18 March 2019, https://doi.org/10.1002/anie.201901771
https://onlinelibrary.wiley.com/doi/10.1002/anie.201901771

Dedicated to the 100th anniversary of Nankai University

Can a poison be a gift? the role of alkali metal in the α-MnO2 catalyzed ammonia selective catalytic reaction

Zhifei Hao,[+][a] Zhurui Shen,[+][b Yi Li,[c] Haitao Wang,[a] Lirong Zheng,[d] Ruihua Wang,[a] Guoquan Liu,[a] and Sihui Zhan*[a]

[a] Z.F. Hao, R.H. Wang, G.Q. Liu, Prof. H.T. Wang, Prof. S.H. Zhan
MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control College of Environmental Science and Engineering, Nankai University Tianjin 300350 (P. R. China)
E-mail: sihuizhan@nankai.edu.cn
b Prof. Z.R. Shen
School of Materials Science and Engineering, Nankai University Tianjin 300350 (P. R. China)
[c] Prof. Y. Li
Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Science, Tianjin University Collaborative Innovation Center of Chemical Science and Engineering Tianjin, 300072 (P. R. China)
[d] Dr. L. Zheng
Beijing Synchrotron Radiation Facility, Institude of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (P.R. China)
[+] These authors contributed equally to this work.
Supporting information for this article is given via a link at the end of the documents.

作者: NKU    时间: 2019-3-25 21:02
材料科学与工程学院徐加良研究员,卜显和教授Advanced Materials,通讯作者:徐加良,卜显和
Advanced Materials Early View First published: 18 March 2019 10.1002/adma.201806736
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806736

Halide Perovskites for Nonlinear Optics
Jialiang Xu,* Xinyue Li, Jianbo Xiong, Chunqing Yuan, Sergey Semin, Theo Rasing, and Xian-He Bu*
Prof. J. Xu, X. Li, J. Xiong, C. Yuan, Prof. X.-H. Bu
School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
E-mail: jialiang.xu@nankai.edu.cn; buxh@nankai.edu.cn
X. Li, Dr. S. Semin, Prof. T. Rasing
Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
作者: NKU    时间: 2019-3-25 21:03
元素有机化学研究所李正名院士ANGEWANDTE,通讯作者:叶萌春、李正名
Angewandte Chemie, First published: 19 March 2019,DOI:10.1002/ange.201902607
https://onlinelibrary.wiley.com/doi/10.1002/ange.201902607

Ligand-Promoted Fe(III)-Catalyzed Hydrofluorination of Alkenes
Yongtao Xie, Peng-Wei Sun, Yuxin Li, Siwei Wang, Mengchun Ye*, Zhengming Li*

Dedicated to 100th anniversary of Nankai University

Abstract: An iron-catalyzed hydrofluorination of unactivated alkenes has been developed. The use of multi-dentate ligand and fluorination reagent (NFSI) proved to be critical for this reaction, affording various fluorinated compounds in up to 94% yield.

Y. Xie, P.-W. Sun, Y. Li, S. Wang, M. Ye, Z. Li
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071 (China)
E-mail: mcye@nankai.edu.cn, nkzml@vip.163.com
作者: NKU    时间: 2019-3-25 21:03
光电子薄膜器件与技术研究所张晓丹研究员通讯Nano Energy,通讯作者:Jinghai Yang,张晓丹
Nano Energy, In press, accepted manuscript, A vailable online 19 March 2019, 10.1016/j.nanoen.2019.03.059
https://www.sciencedirect.com/sc ... i/S221128551930254X

Toward ultra-thin and omnidirectional perovskite solar cells: Concurrent improvement in conversion efficiency by employing light-trapping and recrystallizing treatment
Fengyou Wang ace, Yuhong Zhang a, Meifang Yang a, Lin Fan ac, Lili Yang ac, Yingrui Sui ac, Jinghai Yang acd*, Xiaodan Zhang b*
a Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, China
b Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Renewable Energy Conversion and Storage Center, Tianjin, 300071, China
c National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping, 136000, China
d Si Ping Hong Zui University Science Park, Siping, 136000, China
e Key Laboratory of Preparation and Application of Environmental Friendly Materials, Ministry of Education, Jilin Normal University, Changchun, 130103, China
*jhyang1@jlnu.edu.cn
*xdzhang@nankai.edu.cn
作者: NKU    时间: 2019-3-25 21:03
化学院陈军院士课题组ANGEWANDTE,通讯作者:牛志强研究员
Angew. Chem. Int. Ed.,DOI:10.1002/anie.201902679,First published: 20 March 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201902679

Reversible Oxygen Redox Chemistry in Aqueous Zinc-Ion Batteries
Fang Wan,[a] Yan Zhang,[a] Linlin Zhang,[a] Daobin Liu,[ b] Changda Wang,[ b] Li Song,[ b] Zhiqiang Niu,*[a] and Jun Chen[a]
Dedicated to 100th anniversary of Nankai University

[a] Dr. F. Wan, Y. Zhang, Dr. L. Zhang, Prof. Z. Niu, Prof. J. Chen
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University,Tianjin, 300071, P. R. China
E-mail: zqniu@nankail.edu.cn

作者: NKU    时间: 2019-3-25 21:04
物理学院通讯作者+并列一作NAT COMMUN,通讯作者:Lixin Zhang等
Nature Communications, volume 10, Article number: 1348 (2019),Published: 22 March 2019
https://www.nature.com/articles/s41467-019-09269-9

Boundary activated hydrogen evolution reaction on monolayer MoS2
Jianqi Zhu1,2, Zhi-Chang Wang3, Huijia Dai4, Qinqin Wang1,5, Rong Yang1,5, Hua Yu1, Mengzhou Liao1,5, Jing Zhang1, Wei Chen1, Zheng Wei1,5, Na Li1,5, Luojun Du1, Dongxia Shi1,5, Wenlong Wang1,5, Lixin Zhang4, Ying Jiang 3,6,7 & Guangyu Zhang1,5,6,8

1 CAS Key Laboratory of Nanoscale Physics and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
2 School of Physics and Electronic Engineering, Sichuan Normal University, Chengdu, Sichuan 610101, China.
3 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
4 School of Physics, Nankai University, Tianjin 300071, China.
5 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.
6 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China.
7 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, PR China.
8 Beijing Key Laboratory for Nanomaterials and Nanodevices, Beijing 100190, China.
These authors contributed equally: Jianqi Zhu, Zhi-Chang Wang, Huijia Dai. Correspondence and requests for materials should be addressed to R.Y. (email: ryang@iphy.ac.cn) or to L.Z. (email: lxzhang@nankai.edu.cn) or to Y.J. (email: yjiang@pku.edu.cn) or to
G.Z. (email: gyzhang@iphy.ac.cn)




作者: NKU    时间: 2019-3-25 21:04
生命科学学院丁丹研究员Advanced Materials,通讯作者:丁丹,Bing Yang,Yongming Zhang,Wang Zhang Yuan
Advanced Materials Early View First published: 25 March 2019 10.1002/adma.201807222
https://onlinelibrary.wiley.com/doi/10.1002/adma.201807222
共同通讯+并列一作

Achieving Persistent, Efficient, and Robust Room-Temperature Phosphorescence from Pure Organics for Versatile Applications
Zihan He#, Heqi Gao#, Shitong Zhang, Shuyuan Zheng, Yunzhong Wang, Zihao Zhao, Dan Ding,* Bing Yang,* Yongming Zhang,* and Wang Zhang Yuan*
Z. He, Dr. S. Zheng, Y. Wang, Z. Zhao, Prof. Y. Zhang, Prof. W. Z. Yuan
School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
E-mail: ymzhang@sjtu.edu.cn; wzhyuan@sjtu.edu.cn
H. Gao, Prof. D. Ding
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
E-mail: dingd@nankai.edu.cn
Dr. S. Zhang, Prof. B. Yang
State Key Laboratory of Supramolecular Structures and Materials, College of Chemistry, Jilin University, Changchun 130012, China
E-mail: yangbing@jlu.edu.cn
#Z.H. and H.G. contributed equally to this work.
作者: NKU    时间: 2019-3-25 21:04
材料科学与工程学院朱剑研究员Advanced Materials,通讯作者:朱剑
Advanced Materials Early View First published: 25 March 2019 10.1002/adma.201806480
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806480

Self-Limiting Assembly Approaches for Nanoadditive Manufacturing of Electronic Thin Films and Devices
Zhao Wang#, Yu Kang#, Sanchuan Zhao#, and Jian Zhu*
Z. Wang, Y. Kang, S. Zhao, Prof. J. Zhu
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
E-mail: zj@nankai.edu.cn
Prof. J. Zhu
Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry & Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, P. R. China
#Z.W., Y.K., and S.C.Z. contributed equally to this work.




作者: NKU    时间: 2019-3-30 20:05
化学学院陈永胜课题组Advanced Materials,通讯作者:万相见,陈永胜

Advanced Materials Early View First published: 25 March 2019 10.1002/adma.201804723

https://onlinelibrary.wiley.com/doi/10.1002/adma.201804723




A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and Two Absorption Complementary Acceptors

Lingxian Meng#, Yuan-Qiu-Qiang Yi#, Xiangjian Wan,* Yamin Zhang, Xin Ke, Bin Kan, Yanbo Wang, Ruoxi Xia, Hin-Lap Yip, Chenxi Li, and Yongsheng Chen*

L. Meng, Y.-Q.-Q. Yi, Dr. X. Wan, Y. Zhang, X. Ke, B. Kan, Y. Wang, Prof. C. Li, Prof. Y. Chen

The Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, Centre of Nanoscale Science and Technology, College of Chemistry, Nankai University, Tianjin 300071, China

E-mail: xjwan@nankai.edu.cn; yschen99@nankai.edu.cn

R. Xia, Prof. H.-L. Yip

State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

L.M. and Y.-Q.-Q.Y. contributed equally to this work.




Abstract

The tandem structure is an efficient way to simultaneously tackle absorption and thermalization losses of the single junction solar cells. In this work, a high‐performance tandem organic solar cell (OSC) using two subcells with the same donor poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene))‐alt‐(5,5‐(1′,3′‐di‐2‐thienyl‐5′,7′‐bis(2‐ethylhexyl)benzo[1′,2′‐c:4′,5′‐c′]dithiophene‐4,8‐dione))] (PBDB‐T) and two acceptors, F‐M and 2,9‐bis(2‐methylene‐(3(1,1‐dicyanomethylene)benz[f ]indanone))7,12‐dihydro‐(4,4,10,10‐tetrakis(4‐hexylphenyl)‐5,11‐diocthylthieno[3′,2′:4,5]cyclopenta[1,2‐b]thieno[2″,3″:3′,4′]cyclopenta[1′,2′:4,5]thieno[2,3‐f][1]benzothiophene (NNBDT), with complementary absorptions is demonstrated. The two subcells show high Voc with value of 0.99 V for the front cell and 0.86 V for the rear cell, which is the prerequisite for obtaining high Voc of their series‐connected tandem device. Although there is much absorption overlap for the subcells, a decent Jsc of the tandem cell is still obtained owing to the complementary absorption of the two acceptors in a wide range. With systematic device optimizations, a best power conversion efficiency of 14.52% is achieved for the tandem device, with a high Voc of 1.82 V, a notable FF of 74.7%, and a decent Jsc of 10.68 mA cm−2. This work demonstrates a promising strategy of fabricating high‐efficiency tandem OSCs through elaborate selection of the active layer materials in each subcell and tradeoff of the Voc and Jsc of the tandem cells.

作者: NKU    时间: 2019-3-30 20:05
药学院和药物化学生物学国家重点实验室刘遵峰教授Advanced Functional Materials,通讯作者:刘遵峰
Advanced Functional Materials Early View First published: 25 March 2019 10.1002/adfm.201808995
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201808995

Photothermal Bimorph Actuators with In-Built Cooler for Light Mills, Frequency Switches, and Soft Robots
Jingjing Li, Rui Zhang, Linlin Mou, Monica Jung de Andrade, Xiaoyu Hu, Kaiqing Yu, Jinkun Sun, Tianjiao Jia, Yuanyuan Dou, Hong Chen, Shaoli Fang, Dong Qian, and Zunfeng Liu*
J. Li, L. Mou, X. Hu, K. Yu, J. Sun, T. Jia, Y. Dou, Dr. Z. Liu
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, College of Pharmacy, Nankai University, Tianjin 300071, China
E-mail: liuzunfeng@nankai.edu.cn
R. Zhang, Prof. D. Qian
Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
Dr. M. Jung de Andrade, Dr. S. Fang
Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA
Prof. H. Chen
School of Materials Science and Energy Engineering, Foshan University, Foshan 528325, China

作者: NKU    时间: 2019-3-30 20:06
电子信息与光学工程学院向东课题组Light: Science & Applications,通讯作者:Bingqian Xu,Takhee Lee,向东
Light: Science & Applications volume 8, Article number: 34 (2019) 10.1038/s41377-019-0144-z
https://www.nature.com/articles/s41377-019-0144-z

Atomic switches of metallic point contacts by plasmonic heating
Weiqiang Zhang, Hongshuang Liu, Jinsheng Lu, Lifa Ni, Haitao Liu, Qiang Li, Min Qiu, Bingqian Xu*, Takhee Lee*, Zhikai Zhao, Xianghui Wang, Maoning Wang, Tao Wang, Andreas Offenh?usser, Dirk Mayer, Wang-Taek Hwang & Dong Xiang*
Affiliations
Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Key Laboratory of Optical Information Science and Technology, Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, 300350, Tianjin, China
Weiqiang Zhang, Hongshuang Liu, Lifa Ni, Haitao Liu, Bingqian Xu, Zhikai Zhao, Xianghui Wang, Maoning Wang & Dong Xiang
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China
Jinsheng Lu, Qiang Li & Min Qiu
College of Engineering, University of Georgia, Athens, GA, 30602, USA
Bingqian Xu
Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
Takhee Lee & Wang-Taek Hwang
Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
Tao Wang
Institute of Complex Systems, ICS-8, Bioelectronics, Research Center Juelich and JARA Fundamentals of Future Information Technology, Jülich, 52425, Germany
Andreas Offenh?usser & Dirk Mayer
*Correspondence to Bingqian Xu or Takhee Lee or Dong Xiang.
作者: NKU    时间: 2019-3-30 20:06
化学学院陈军院士课题组Angewandte Chemie International Edition,通讯作者:陈军
Angewandte Chemie International Edition Accepted Articles First published: 27 March 2019 10.1002/anie.201902185
https://onlinelibrary.wiley.com/doi/10.1002/anie.201902185

Cyclohexanehexone with ultrahigh capacity as cathode materials for lithium-ion batteries
Yong Lu, Xuesen Hou, Licheng Miao, Lin Li, Ruijuan Shi, Luojia Liu, and Jun Chen*
Dedicated to the 100th anniversary of Nankai University

Dr. Y. Lu, Dr. X. Hou, Dr. L. Miao, Dr. L. Li, Dr. R. Shi, Dr. L. Liu, Prof. J. Chen
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
*E-mail: chenabc@nankai.edu.cn
作者: NKU    时间: 2019-3-30 20:06
生命科学学院曹雪涛院士课题组Nature Reviews Immunology(IF=41.982),通讯作者:张迁,曹雪涛
Nature Reviews Immunology (2019) 10.1038/s41577-019-0151-6
https://www.nature.com/articles/s41577-019-0151-6

Epigenetic regulation of the innate immune response to infection
Qian Zhang* & Xuetao Cao*
Affiliations
College of Life Science, Nankai University, Tianjin, China
Qian Zhang & Xuetao Cao
National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, China
Qian Zhang & Xuetao Cao
Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
Correspondence to Qian Zhang or Xuetao Cao.
作者: NKU    时间: 2019-3-30 20:07
物理科学学院Phys. Rev. Lett.,通讯作者:Daniel Leykam,许京军,陈志刚
Phys. Rev. Lett. 122, 123903 (2019) - Published 29 March 2019
https://journals.aps.org/prl/abs ... sRevLett.122.123903


Valley Vortex States and Degeneracy Lifting via Photonic Higher-Band Excitation

Daohong Song1,2, Daniel Leykam3,*, Jing Su1, Xiuying Liu1, Liqin Tang1, Sheng Liu4, Jianlin Zhao4, Nikolaos K. Efremidis5, Jingjun Xu1,2,†, and Zhigang Chen1,2,6,‡

1The MOE Key Laboratory of Weak-Light Nonlinear Photonics, and TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
2Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
3Center for Theoretical Physics of Complex Systems, Institute for Basic Science, Daejeon 34126, Republic of Korea
4The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and School of Science, Northwestern Polytechnical University, Xi’an 710072, China
5Department of Mathematics and Applied Mathematics, University of Crete, 70013 Heraklion, Crete, Greece
6Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132, USA

*Corresponding author. dleykam@ibs.re.kr
†Corresponding author. jjxu@nankai.edu.cn
‡Corresponding author. zgchen@nankai.edu.cn

ABSTRACT

We demonstrate valley-dependent vortex generation in photonic graphene. Without breaking inversion symmetry, the excitation of two valleys leads to the formation of an optical vortex upon Bragg reflection to the third equivalent valley, with its chirality determined by the valley degree of freedom. Vortex-antivortex pairs with valley-dependent topological charge flipping are also observed and corroborated by numerical simulations. Furthermore, we develop a three-band effective Hamiltonian model to describe the dynamics of the coupled valleys and find that the commonly used two-band model is not sufficient to explain the observed vortex degeneracy lifting. Such valley-polarized vortex states arise from high-band excitation without a synthetic-field-induced gap opening. Our results from a photonic setting may provide insight for the study of valley contrasting and Berry-phase-mediated topological phenomena in other systems.

作者: NKU    时间: 2019-3-30 20:34
生命科学学院丁丹研究员Advanced Materials,通讯作者:丁丹
Advanced Materials Early View First published: 29 March 2019 10.1002/adma.201806331
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806331



Regulating the Photophysical Property of Organic/Polymer Optical Agents for Promoted Cancer Phototheranostics
Chao Chen#, Hanlin Ou#, Ruihua Liu, and Dan Ding*
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
*E-mail: dingd@nankai.edu.cn
#C.C. and H.O. contributed equally to this work.

Abstract

On the basis of the Jablonski diagram, the photophysical properties of optical agents are highly associated with biomedical function and efficacy. Herein, the focus is on organic/polymer optical agents and the recent progress in the main strategies for regulating their photophysical properties to achieve superior cancer diagnosis/phototheranostics applications are highlighted. Both the approaches of nanoengineering and molecular design, which can lead to optimized effectiveness of required biomedical function, are discussed.

作者: NKU    时间: 2019-4-6 15:57
化学学院陈军院士课题组ADVANCED MATERIALS, 通讯作者:程方益研究员
ADVANCED MATERIALS, First published: 01 April 2019, DOI:10.1002/adma.201806326

https://onlinelibrary.wiley.com/doi/10.1002/adma.201806326

Self-Supported Transition-Metal-Based Electrocatalysts for Hydrogen and Oxygen Evolution
Hongming Sun, Zhenhua Yan, Fangming Liu, Wence Xu, Fangyi Cheng,* and Jun Chen

Dr. H. Sun, Dr. Z. Yan, F. Liu, Dr. W. Xu, Prof. F. Cheng, Prof. J. Chen
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
E-mail: fycheng@nankai.edu.cn

Abstract

Electrochemical water splitting is a promising technology for sustainable conversion, storage, and transport of hydrogen energy. Searching for earth‐abundant hydrogen/oxygen evolution reaction (HER/OER) electrocatalysts with high activity and durability to replace noble‐metal‐based catalysts plays paramount importance in the scalable application of water electrolysis. A freestanding electrode architecture is highly attractive as compared to the conventional coated powdery form because of enhanced kinetics and stability. Herein, recent progress in developing transition‐metal‐based HER/OER electrocatalytic materials is reviewed with selected examples of chalcogenides, phosphides, carbides, nitrides, alloys, phosphates, oxides, hydroxides, and oxyhydroxides. Focusing on self‐supported electrodes, the latest advances in their structural design, controllable synthesis, mechanistic understanding, and strategies for performance enhancement are presented. Remaining challenges and future perspectives for the further development of self‐supported electrocatalysts are also discussed.
作者: NKU    时间: 2019-4-6 15:57
化学学院分析科学研究中心陈朗星教授ANGEWANDTE,与北京大学合作,通讯作者:陈朗星、徐东升
Angew. Chem. Int. Ed.,  DOI:10.1002/anie.201900658, First published: 02 April 2019|

https://onlinelibrary.wiley.com/doi/10.1002/anie.201900658

Stable and Highly Efficient Photocatalysis with Lead-Free Double-Perovskite of Cs2AgBiBr6

Zhenzhen Zhanga, b, Yongqi Liangb, Hanlin Huangb, Xingyi Liub, Qi Lib, Langxing Chena*, Dongsheng Xub*

[a] Z. Zhang, Prof. L. Chen
Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
E-mail: lxchen@nankai.edu.cn
[b ] Y. Liang, H. Huang, X. Liu, Q. Li, Prof. D. Xu
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
E-mail:dsxu@pku.edu.cn

Abstract

Composition engineering of halide perovskite allows the tunability of the bandgap over a wide range so that photons can be effectively harvested, which is of critical importance for increasing the efficiency of photocatalysis under sunlight. However, the poor stability and the low photocatalytic activity of halide perovskites are preventing these defect‐tolerant materials from wide applications in photocatalysis. Here, an alcohol based photocatalytic system for dye degradation with high stability is demonstrated for double perovskite of Cs2AgBiBr6. The reaction rate on Cs2AgBiBr6 is comparable to that on CdS, a model inorganic semiconductor photocatalyst. The fact of fast reaction between free radical and dye molecules indicates the unique catalytic properties of Cs2AgBiBr6 surface. Deposition of metal clusters onto Cs2AgBiBr6 effectively further enhances the photocatalytic activity. Although the stability (five consecutive photocatalytic cycles without obvious decrease of efficiency) requires further improvements, our results indicate the significant potential of Cs2AgBiBr6 based photocatalysis.
作者: NKU    时间: 2019-4-6 15:57
材料科学与工程学院梁嘉杰课题组Advanced Materials,通讯作者:梁嘉杰
Advanced Materials Early View First published: 03 April 2019 10.1002/adma.201805864
https://onlinelibrary.wiley.com/doi/10.1002/adma.201805864

Recent Development of Printed Micro-Supercapacitors: Printable Materials, Printing Technologies, and Perspectives
Hongpeng Li and Jiajie Liang*
H. Li, Prof. J. Liang
School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
E-mail: liang0909@nankai.edu.cn
Prof. J. Liang
Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300350, P. R. China
Prof. J. Liang
Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300350, P. R. China
作者: NKU    时间: 2019-4-6 15:58
环境科学与工程学院鞠美庭教授Applied Catalysis B: Environmental,通讯作者:鞠美庭
Applied Catalysis B: Environmental, In press, accepted manuscript, A-vailable online 3 April 2019, 10.1016/j.apcatb.2019.04.003
https://www.sciencedirect.com/sc ... i/S0926337319303194

Efficient catalytic conversion of glucose into 5-hydroxymethylfurfural by aluminum oxide in ionic liquid
Qidong Hou, Meinan Zhen, Weizun Li, Le Liu, Jinpeng Liu, Shiqiu Zhang, Yifan Nie, Chuanyunlong Bai, Xinyu Bai, Meiting Ju*
Tianjin Engineering Research Center of Biomass Solid Waste Resources Technology, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
*jumeit@nankai.edu.cn

Abstract
Conversion of biomass-derived glucose to 5-hydroxymethylfurfural (HMF) is an important step for valorizing lignocellulosic biomass. In conventional reaction systems such as aqueous or water-organic solvent biphasic system, degradation of the formed HMF and other intermediates into undesired products is inevitable due to the presence of Brønsted acid, limiting HMF production efficiency. Here, we develop a novel reaction system consisting of heterogeneous catalyst with reduced Brønsted acidity and ionic liquid 1-ethyl-3-methylimidazolium bromide (EMIMBr) to achieve the efficient conversion of high-concentration glucose to HMF. A series of Al-containing materials was synthesized and characterized by N2 adsorption-desorption, XRD, XPS, FIIR, Py-IR and CO2 TPD, among which the Al2O3-b-0.05 prepared by simple alkaline treatment exhibited high Lewis acidity and low Brønsted acidity. The Al2O3-b-0.05 in the medium of EMIMBr leaded to the highest HMF yield of 49.7% from high-concentration glucose (up to 10 wt%), as is more efficient than the heterogeneous EMIMCl/Al2O3-b-0.05 and homogeneous EMIMBr/AlCl3 system. This work provides a paradigm of improving HMF production efficiency via the combined use of heterogeneous Lewis acid catalyst and ionic liquid.
作者: NKU    时间: 2019-4-19 21:41
材料科学与工程学院高学平课题组Advanced Functional Materials,通讯作者:高学平
Advanced Functional Materials Early View First published: 08 April 2019 10.1002/adfm.201901051
https://onlinelibrary.wiley.com/doi/10.1002/adfm.201901051

Conductive CoOOH as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite for Lithium–Sulfur Battery
Zhen-Yu Wang, Lu Wang, Sheng Liu, Guo-Ran Li, and Xue-Ping Gao*
Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China
E-mail: xpgao@nankai.edu.cn

Abstract

Lithium–sulfur battery is recognized as one of the most promising energy storage devices, while the application and commercialization are severely hindered by both the practical gra-vimetric and volumetric energy densities due to the low sulfur content and tap density with lightweight and nonpolar porous carbon materials as sulfur host. Herein, for the first time, conductive CoOOH sheets are introduced as carbon‐free sulfur immobilizer to fabricate sulfur‐based composite as cathode for lithium–sulfur battery. CoOOH sheet is not only a good sulfur‐loading matrix with high electron conductivity, but also exhibits outstanding electrocatalytic activity for the conversion of soluble lithium polysulfide. With an ultrahigh sulfur content of 91.8 wt% and a tap density of 1.26 g cm−3, the sulfur/CoOOH composite delivers high gra-vimetric capacity and volumetric capacity of 1199.4 mAh g−1‐composite and 1511.3 mAh cm−3 at 0.1C rate, respectively. Meanwhile, the sulfur‐based composite presents satisfactory cycle stability with a slow capacity decay rate of 0.09% per cycle within 500 cycles at 1C rate, thanks to the strong interaction between CoOOH and soluble polysulfides. This work provides a new strategy to realize the combination of gra-vimetric energy density, volumetric energy density, and good electrochemical performance of lithium–sulfur battery.

作者: NKU    时间: 2019-4-19 21:41
材料科学与工程学院杜亚平教授Coordination Chemistry Reviews,通讯作者:杜亚平
Coordination Chemistry Reviews, Volume 390, 1 July 2019, Pages 32-49
https://www.sciencedirect.com/sc ... i/S0010854519300839

Rare earth incorporated electrode materials for advanced energy storage
Hongyang Zhao ab, Jiale Xia ab, Dandan Yin ab, Meng Luo ab, ChunhuaYan acd, Yaping Du a*
a Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, PR China
b Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, PR China
c Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
d College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
* Corresponding author.
作者: NKU    时间: 2019-4-19 21:42
化学学院赵斌教授Coordination Chemistry Reviews,通讯作者:赵斌
Coordination Chemistry Reviews, Volume 390, 1 July 2019, Pages 50-75
https://www.sciencedirect.com/sc ... i/S0010854518306131


Applications of MOFs: Recent advances in photocatalytic hydrogen production from water
Ying Shi, An-Fei Yang, Chun-Shuai Cao, Bin Zhao*
Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Nankai University, Tianjin 300071, China
*Corresponding author.

Abstract

Owing to the structural controllability, pore modification and unique semiconductor property of metal-organic frameworks (MOFs), the investigation on MOFs as efficient photocatalysts for hydrogen production from water splitting under UV, visible or even NIR light irradiation ha-ve made great progress. In this review, we systematically summarized the recent advances of MOFs-based photocatalysts for hydrogen production from water, and divided them into three categories: MOFs, MOFs composites and MOFs-derived photocatalysts. The high hydrogen production efficiency and possible hydrogen production mechanism of MOFs-based photocatalysts were analyzed in detail. A brief perspective was given to achieve high effective and stable MOFs-based materials for photolysis of water, providing suggestions to explore new and efficient MOFs-based photocatalysts.

作者: NKU    时间: 2019-4-19 21:42
南开有机所汤平平研究员ANGEWANDTE,通讯作者:汤平平
Angew. Chem. Int. Ed., DOI:10.1002/anie.201901447, First published: 09 April 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201901447


Visible-Light Photoredox-Catalyzed and Copper-Promoted Trifluoromethoxylation of Arenediazonium Tetrafluoroborates
Shaoqiang Yang,+ Miao Chen+ and Pingping Tang*

Dedicated to Professor Qingyun Chen on the occasion of his 90th birthday


S. Yang,+ M. Chen,+ Prof. P. Tang
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
E-mail: ptang@nankai.edu.cn
[+] These authors contributed equally.

Abstract: A photoredox-catalyzed and copper-promoted trifluoromethoxylation of arenediazonium tetrafluoroborates ha-ve been developed for the first time. Trifluoromethyl arylsulfonate (TFMS) was used as the trifluoromethoxylation reagent. This reaction is scalable and proceeds regioselectively under mild reaction conditions. Furthermore, mechanistic studies suggested that Cs[Cu(OCF3)2] intermediate might be generated during the reaction.  

作者: NKU    时间: 2019-4-19 21:42
南开有机所陈弓课题组JACS,通讯作者:Sukbok Chang、陈弓、何刚
J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.9b02811 • Publication Date (Web): 12 Apr 2019
https://pubs.acs.org.ccindex.cn/doi/10.1021/jacs.9b02811

Iridium-Catalyzed Enantioselective C(sp3)−H Amidation Controlled by Attractive Noncovalent Interactions
Hao Wang,1 Yoonsu Park,2,3 Ziqian Bai,1 Sukbok Chang,2,3* Gang He,1* and Gong Chen1*
1 State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
2 Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
3 Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.

Corresponding Author
sbchang@kaist.ac.kr, hegang@nankai.edu.cn, gongchen@nankai.edu.cn.

ABSTRACT: While remarkable progress has been made over the past decade, new design strategies for chiral catalysts in enantioselective C(sp3)−H functionalization reactions are still highly desirable. In particular, the ability to use attractive non-covalent interactions for rate acceleration and enantiocontrol would significantly expand the current arsenal for asymmetric metal catalysis. Herein, we report the development of a highly enantioselective Ir(III)-catalyzed intramolecular C(sp3)−H amidation reaction of dioxazolone substrates for synthesis of optically enriched g-lactams using a newly designed a-amino acid-based chiral ligand. This Ir-catalyzed reaction proceeds with excellent efficiency and with outstanding enantioselectivity for both activated and unactivated alkyl C(sp3)−H bonds under very mild conditions. It offers the first general route for asymmetric synthesis of g-alkyl g-lactams. Water was found to be a unique co-solvent to achieve excellent enantioselectivity for g-aryl lactam production. Mechanistic studies revealed that the ligands form a well-defined groove-type chiral pocket around the Ir center.The hydrophobic effect of this pocket allows facile stereo-controlled binding of substrates in polar or aqueous media. Instead of capitalizing on steric repulsions as in the conventional approaches, this new Ir catalyst operates through an unprecedented enantiocontrol mechanism for intramolecular nitrenoid C−H insertion featuring multiple attractive non-covalent interactions.
作者: NKU    时间: 2019-4-19 21:43
化学学院陈永胜课题组Science Advances,通讯作者:陈永胜
Science Advances 12 Apr 2019: Vol. 5, no. 4, eaa v2589 DOI: 10.1126/sciadv.aa v2589
https://advances.sciencemag.org/content/5/4/eaa(请删除括号及中文)v2589

Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures
Kai Zhao1,2,*, Tengfei Zhang1,2,*, Huicong Chang1,2, Yang Yang1,2, Peishuang Xiao1,2, Hongtao Zhang1,2, Chenxi Li1,2, Chandra Sekhar Tiwary3, Pulickel M. Ajayan3,† and Yongsheng Chen1,2,†
1 Center for Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
2 National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.
3 Department of Materials Science and NanoEngineering, Rice University, Houston, TX 77005, USA.
†Corresponding author. Email: yschen99@nankai.edu.cn (Y.C.); ajayan@rice.edu (P.M.A.)
*These authors contributed equally to this work.

Abstract

Until now, materials with high elasticity at deep cryogenic temperatures ha ve not been observed. Previous reports indicated that graphene and carbon nanotube–based porous materials can exhibit reversible mechano-elastic beha vior from liquid nitrogen temperature up to nearly a thousand degrees Celsius. Here, we report wide temperature–invariant large-strain super-elastic beha vior in three-dimensionally cross-linked graphene materials that persists even to a liquid helium temperature of 4 K, a property not previously observed for any other material. To understand the mechanical properties of these graphene materials, we show by in situ experiments and modeling results that these remarkable properties are the synergetic results of the unique architecture and intrinsic elastic/flexibility properties of individual graphene sheets and the covalent junctions between the sheets that persist even at harsh temperatures. These results suggest possible applications for such materials at extremely low temperature environments such as those in outer space.


作者: NKU    时间: 2019-4-19 21:43
材料科学与工程学院李伟教授Coordination Chemistry Reviews,通讯作者:Shi-Jing Sun,李伟
Coordination Chemistry Reviews, Volume 391, 15 July 2019, Pages 15-29
https://www.sciencedirect.com/sc ... i/S0010854519300219

Mechanical properties of hybrid organic-inorganic perovskites
Coordination Chemistry Reviews, Volume 391, 15 July 2019, Pages 15-29
Li-Jun Ji ab, Shi-Jing Sun c*, Yan Qin b, Kai Li a, Wei Li ade*
aSchool of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
bSchool of Physics & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
cDepartment of Mechanical Engineering, Massachusetts Institute of Technology, MA 02139, United States
dHubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
eSchool of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
*shijings@mit.edu
*wl276@nankai.edu.cn
作者: NKU    时间: 2019-4-19 21:43
南开有机所通讯作者+并列第一作者ANGEW,通讯作者:彭谦研究员
Angew. Chem. Int. Ed. ,DOI:10.1002/anie.201902464,First published: 16 April 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201902464


Iridium-Catalyzed Distal Hydroboration of Aliphatic Internal Alkenes
Guangzhu Wang,[a][c]‡, Xinyi Liang,[ b]‡ Lili Chen,[c] Qian Gao,[c] Jian-Guo Wang,[ b] Panke Zhang,*[a] Qian Peng,*[b ] and Senmiao Xu*[c]

Dedicated to 100th Anniversary of Nankai University

[a] G. Wang, Prof. P. Zhang College of Chemistry and Molecular Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China E-mail: pkzhang@zzu.edu.cn
[b ] X. Liang, Prof. J.-G. Wang, Prof. Dr. Q. Peng State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China  E-mail: qpeng@nankai.edu.cn
[c]  G. Wang, L. Chen, Q. Gao, Prof. S. Xu State Key Laboratory of Oxo Synthesis and Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China E-mail: senmiaoxu@licp.cas.cn
‡  These authors contribute equally to this work.

Abstract
Regioselective hydroboration of aliphatic internal alkenes remains a great challenge. Reported here is an iridium‐catalyzed hydroboration of aliphatic internal alkenes, providing distal borylated products in good to excellent yields with high regioselectivity (up to 99:1). We also demonstrated that the C‐B bond of the distal borylated product could be converted facilely to other functionalities. DFT calculation indicated that reaction undergoes an unexpected Ir(III/V) cycle.
作者: NKU    时间: 2019-4-27 09:26
化学院陈军院士课题组Nature Communications,通讯作者:袁明鉴研究员
Nature Communications,volume 10, Article number: 1868 (2019),Published: 23 April 2019
https://www.nature.com/articles/s41467-019-09794-7

Spectra stable blue perovskite light-emitting diodes
Yuanzhi Jiang 1,6, Chaochao Qin2,6, Minghuan Cui2, Tingwei He1, Kaikai Liu2, Yanmin Huang1, Menghui Luo1, Li Zhang1, Hongyu Xu1, Saisai Li1, Junli Wei1, Zhiyong Liu2, Huanhua Wang3, Gi-Hwan Kim4, Mingjian Yuan1,5 & Jun Chen1,5

1 Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, 300071 Tianjin, China.
2 College of Physics and Materials Science, Henan Normal University, 453007 Xinxiang, China.
3 Institute of High Energy Physics, Chinese Academy of Science, 100049 Beijing, China.
4 Photonic Energy Research Center, Korea Photonics Technology Institute, 108, Cheomdan venture-ro, Buk-gu, Gwangju 500-779, Republic of Korea.
5 Renewable Energy Conversion and Storage Center (RECAST), Nankai University, 300071 Tianjin, China. 6These authors contributed equally: Yuanzhi Jiang, Chaochao Qin. Correspondence and requests for materials should be addressed to M.Y. (email: yuanmj@nankai.edu.cn)

Device performance and in particular device stability for blue perovskite light-emitting diodes (PeLEDs) remain considerable challenges for the whole community. In this manuscript, we conceive an approach by tuning the ‘A-site’ cation composition of perovskites to develop blue-emitters. We herein report a Rubidium-Cesium alloyed, quasi-two-dimensional per- ovskite and demonstrate its great potential for pure-blue PeLED applications. Composition engineering and in-situ passivation are conducted to further improve the material’s emission property and stabilities. Consequently, we get a prominent film photoluminescence quantum yield of around 82% under low excitation density. Encouraged by these findings, we finally achieve a spectra-stable blue PeLED with the peak external quantum efficiency of 1.35% and a half-lifetime of 14.5 min, representing the most efficient and stable pure-blue PeLEDs reported so far. The strategy is also demonstrated to be able to generate efficient perovskite blue emitters and PeLEDs in the whole blue spectral region (from 454 to 492 nm).

作者: NKU    时间: 2019-4-27 09:26
材料科学与工程学院稀土中心孙忠明课题组ANGEWANDTE,通讯作者:孙忠明
Angew. Chem. Int. Ed. ,10.1002/anie.201904109,First published: 23 April 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201904109

Structure and Bonding in [Sb@In8Sb12]3− and [Sb@In8Sb12]5−

Chao Liu,a,b† Nikolay V. Tkachenko,d,† Ivan A. Popov,e,† Nikita Fedik,d Xue Min,c Cong-Qiao Xu,f Jun Li,f John E. McGrady,g Alexander I. Boldyrev,d and Zhong-Ming Sun,a,c,*

[a] Dr. C. Liu, Prof. Dr. Z. M. Sun
School of Materials Science and Engineering, State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin 300350, China E-mail: sunlab nankai edu cn; (http://zhongmingsun.weebly.com/)
[b ] Dr. C. Liu
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P. R. China
[c] Dr. X. Min, Prof. Dr. Z. M. Sun
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin Street, Changchun, Jilin 130022, China
[d] N. V. Tkachenko, N, Fedik, Prof. Dr. A. I. Boldyrev
Department of Chemistry and Biochemistry, Utah State University, 0300, Old Main Hill, Logan, Utah, 84322-0300, USA.
[e] Dr. Ivan A. Popov
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
[f] Dr. Cong-Qiao Xu, Prof. Jun Li
Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education,
Tsinghua University, Beijing 100084, China
[g] Prof. J. E. McGrady
Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
† These authors contributed equally

作者: NKU    时间: 2019-4-27 09:26
化学学院张新星研究员Angewandte Chemie International Edition,通讯作者:张新星
Angewandte Chemie International Edition, Accepted Articles First published: 23 April 2019, DOI:10.1002/anie.201902815
https://onlinelibrary.wiley.com/doi/10.1002/anie.201902815


Mass Spectrometric Study of Acoustically Levitated Droplet Illuminates Molecular-Level Mechanism of Photodynamic Therapy for Cancer involving Lipid Oxidation
Chaonan Mu, Jie Wang, Kevin M. Barraza, Xinxing Zhang* and J. L. Beauchamp*


Chaonan Mu, Jie Wang, Dr. Prof. X. Zhang,
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center(ReCAST), College of Chemistry, Nankai University, Tianjin 300071 (China)
E-mail: zhangxx nankai edu cn

Kevin M. Barraza, Dr. Prof. J. L. Beauchamp,
Noyes Laboratory of Chemical Physics and the Beckman Institute, California Institute of Technology, Pasadena, California, 91125 (USA)
E-mail: jlbchamp caltech edu

Abstract

Even though the general mechanism of photodynamic therapy for cancer is known, the details and consequences of the reactions between the photosensitizer generated singlet oxygen and substrate molecules remain elusive at the molecular level. Using temoporfin as the photosensitizer, here we combine field‐induced droplet ionization mass spectrometry and acoustic levitation techniques to study the “wall‐less” oxidation reactions of 18:1 cardiolipin and POPG mediated by singlet oxygen at the air‐water interface of levitated water droplets. For both cardiolipin and POPG, every unsaturated oleyl chain is oxidized into an allyl hydroperoxide, which surprisingly is immune to further oxidation. This is attributed to the increased hydrophilicity of the oxidized chain, attracting it toward the water phase, increasing membrane permeability and eventually triggering cell death.

作者: NKU    时间: 2019-4-27 09:26
生命科学学院杨志谋课题组Advanced Materials,通讯作者:杨志谋
Advanced Materials Early View First published: 24 April 2019 10.1002/adma.201805798
https://onlinelibrary.wiley.com/doi/10.1002/adma.201805798

Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides
Jie Gao, Jie Zhan, and Zhimou Yang*
Dr. J. Gao, J. Zhan, Prof. Z. Yang
Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, National Institute for Advanced Materials, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
E-mail: yangzm@nankai.edu.cn
Prof. Z. Yang
Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China


作者: NKU    时间: 2019-4-27 09:27
材料科学与工程学院稀土中心严纯华课题组Advanced Materials,通讯作者:杜亚平,严纯华
Advanced Materials, Early View First published: 24 April 2019, DOI:10.1002/adma.201806461
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806461

Ultrathin 2D Rare-Earth Nanomaterials: Compositions, Syntheses, and Applications
Jun Xu, Xiaoyun Chen, Yueshan Xu, Yaping Du,* and Chunhua Yan*

Prof. J. Xu, X. Y. Chen, Y. S. Xu, Prof. Y. P. Du, Prof. C. H. Yan
Tianjin Key Lab for Rare Earth Materials and Applications Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China
E-mail: ypdu nankai edu cn; yan pku edu cn
Prof. C. H. Yan
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Prof. C. H. Yan
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

Abstract

Ultrathin 2D nanomaterials possess promising properties due to electron confinement within single or a few atom layers. As an emerging class of functional materials, ultrathin 2D rare‐earth nanomaterials may incorporate the unique optical, magnetic, and catalytic beha-viors of rare‐earth elements into layers, exhibiting great potential in various applications such as optoelectronics, magnetic devices, transistors, high‐efficiency catalysts, etc. Despite its importance, reviews on ultrathin 2D rare‐earth nanomaterials or related topics are rare and only focus on a certain family of ultrathin 2D rare‐earth nanomaterials. This work is the first comprehensive review in this impressive field, which covers all families of ultrathin 2D rare‐earth nanomaterials, illustrating their compositions, syntheses, and applications. After summarizing the current achievements, the challenges and opportunities of future research on ultrathin 2D rare‐earth nanomaterials are evaluated.


作者: NKU    时间: 2019-4-27 09:27
本帖最后由 NKU 于 2019-4-26 19:09 编辑


陈军院士课题组今年也在量上爆发了,陈军课题组经验真可以外推到其他老师课题组。南开今年化学两刊估计达70篇以上,数量可以争第一了。希望Nature、Science能突破。

化学院陈军院士课题组ANGEW,通讯作者:谢微研究员
Angew. Chem. Int. Ed. 10.1002/anie.201902825 ,First published: 25 April 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201902825

C−H Arylation on Ni Nanoparticles Discovered by in Situ SERS Monitoring
Yonglong Li, Yanfang Hu, Faxing Shi, Haixia Li, Wei Xie* and Jun Chen

Dedicated to 100th anniversary of Nankai University

Y. L. Li, Y. F. Hu, F. X. Shi, H. X. Li, Prof. W. Xie, Prof. J. Chen
Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center,  College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin 300071, China

Abstract
Bifunctional Au@Ni core‐satellite nanostructures synthesized via a one‐step assembling method are employed for in situ surface‐enhanced Raman spectroscopic (SERS) monitoring of Ni‐catalyzed C‐C bond‐forming reactions. Surprisingly, the reaction which was thought to be an Ullmann‐type self‐coupling reaction, is found to be a cross‐coupling reaction proceeding via photo‐induced aromatic C‐H bond arylation. According to the discovery enabled by the in situ SERS monitoring, a series of biphenyl compounds are synthesized at room temperature by photocatalytic reaction using the cheap Ni NP catalysts.

作者: NKU    时间: 2019-5-4 18:01
化学学院张振杰研究员COORD CHEM REV,通讯作者:张振杰
Coordination Chemistry Reviews, DOI:10.1016/j.ccr.2019.04.003, online 28 April 2019.
https://www.sciencedirect.com/sc ... i/S0010854518306192

The utility of the template effect in metal-organic frameworks
XiuxiuGuoa1 ShuboGenga1 MingjingZhuobd YaoChenbd Michael J.Zaworotkoe PengChengac ZhenjieZhangabc*
a College of Chemistry, Nankai University, Tianjin 300071, Chinab State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, Chinac Key Laboratory of Advanced Energy Materials Chemistry, Nankai University, Tianjin 300071, Chinad College of Pharmacy, Nankai University, Tianjin 300071, Chinae Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94T9PX, Ireland
*Corresponding author at: College of Chemistry, Nankai University, Tianjin 300071, China.
E-mail address: zhangzhenjie nankai.edu.cn (Z. Zhang).
1 These authors contributed equally to this work.

Abstract


This review details the emergence and continued study of the template effect in metal-organic frameworks (MOFs) with emphasis upon (i) reports of template-directed synthesis of MOFs and (ii) using MOFs as hosts to template the formation of new guest species. We focus herein on the relationship between the pore environments of MOF hosts and their guests, and the resulting host-guest properties. Such understanding can enable template effects to serve as a supplementary tool of crystal engineering since it can afford new and otherwise unattainable MOF structures. Templating can also result in control over the chemical reactivity of guests through an enzymatic like process. We also address emerging applications of MOFs formed through a template effect. We anticipate that this review will provide a guide for future research into preparing functional MOFs with targeted structures or properties and to generate reaction products using MOFs as templates.


作者: NKU    时间: 2019-5-4 18:01
化学学院史林启教授课题组Advanced Science,通讯作者:史林启、余志林
Advanced Scienc,DOI:10.1002/advs.201802043,First published: 29 April 2019
https://onlinelibrary.wiley.com/doi/10.1002/advs.201802043

Peptide Tectonics: Encoded Structural Complementarity
          Dictates Programmable Self-Assembly
Shaofeng Lou, Xinmou Wang, Zhilin Yu,* and Linqi Shi*

Dr. S. Lou, X. Wang, Prof. Z. Yu, Prof. L. Shi
Key Laboratory of Functional Polymer Materials, Ministry of Education
State Key Laboratory of Medicinal Chemical Biology Institute of Polymer Chemistry,College of Chemistry
Nankai University,Weijin Road 94, Tianjin 300071, China
E-mail: yzh026 nankai.edu.cn; lqshi nankai.edu.cn


Abstract
Programmable self‐assembly of peptides into well‐defined nanostructures represents one promising approach for bioinspired and biomimetic synthesis of artificial complex systems and functional materials. Despite the progress made over the past two decades in the development of strategies for precise manipulation of the self‐assembly of peptides, there is a remarkable gap between current peptide assemblies and biological systems in terms of structural complexity and functions. Here, the concept of peptide tectonics for the creation of well‐defined nanostructures predominately driven by the complementary association at the interacting interfaces of tectons is introduced. Peptide tectons are defined as peptide building blocks exhibiting structural complementarity at the interacting interfaces of commensurate domains and undergoing programmable self‐assembly into defined supramolecular structures promoted by complementary interactions. Peptide tectons are categorized based on their conformational entropy and the underlying mechanism for the programmable self‐assembly of peptide tectons is highlighted focusing on the approaches for incorporating the structural complementarity within tectons. Peptide tectonics not only provides an alternative perspective to understand the self‐assembly of peptides, but also allows for precise manipulation of peptide interactions, thus leading to artificial systems with advanced complexity and functions and pa ves the way toward peptide‐related functional materials resembling natural systems.
作者: NKU    时间: 2019-5-4 18:02
化学学研高分子所史林启课题组ADVANCED MATERIALS,通讯作者:史林启、刘阳
ADVANCED MATERIALS, DOI:10.1002/adma.201805945, First published: 02 May 2019
https://onlinelibrary.wiley.com/doi/10.1002/adma.201805945

Mimicking Molecular Chaperones to Regulate Protein Folding
Fei-He Ma, Chang Li, Yang Liu,* and Linqi Shi*
Dr. F.-H. Ma, Dr. C. Li, Prof. Y. Liu, Prof. L. Shi
Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
E-mail: yliu nankai.edu.cn; shilinqi nankai.edu.cn

Abstract

Folding and unfolding are essential ways for a protein to regulate its biological activity. The misfolding of proteins usually reduces or completely compromises their biological functions, which eventually causes a wide range of diseases including neurodegeneration diseases, type II diabetes, and cancers. Therefore, materials that can regulate protein folding and maintain proteostasis are of significant biological and medical importance. In living organisms, molecular chaperones are a family of proteins that maintain proteostasis by interacting with, stabilizing, and repairing various non‐native proteins. In the past few decades, efforts ha ve been made to create artificial systems to mimic the structure and biological functions of nature chaperonins. Herein, recent progress in the design and construction of materials that mimic different kinds of natural molecular chaperones is summarized. The fabrication methods, construction rules, and working mechanisms of these artificial chaperone systems are described. The application of these materials in enhancing the thermal stability of proteins, assisting de novo folding of proteins, and preventing formation of toxic protein aggregates is also highlighted and explored. Finally, the challenges and potential in the field of chaperone‐mimetic materials are discussed.


作者: NKU    时间: 2019-5-4 18:02
物理学院陈璟教授共同通讯作者PRL

http://my.nankai.edu.cn/wlxy/cj/list.htm
https://arxiv.org/ftp/arxiv/papers/1810/1810.02354.pdf
https://journals.aps.org/prl/acc ... f3e7f1d697e4df0e27b


Observation of Three-dimensional Photonic Dirac points and Spin-polarized Surface Arcs
Qinghua Guo1, 2†, Oubo You1, 3†, Biao Yang1, 4†, James B. Sellman1, Edward Blythe1, Hongchao Liu1, Yuanjiang Xiang3, Jensen Li 1, 2, Dianyuan Fan3, Jing Chen5*, C. T. Chan2*, Shuang Zhang1*

1. School of Physics & Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
2. Department of Physics and Center for Metamaterials Research, The Hong Kong University of Science and Technology, Hong Kong, China.
3. International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Shenzhen University, Shenzhen 518060, China.
4. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China.
5. School of Physics, Nankai University, Tianjin 300071, China.
*Correspondence to: jchen4@nankai.edu.cn; phchan@ust.hk; s.zhang@bham.ac.uk

作者: NKU    时间: 2019-5-4 18:04
千呼万唤南开ANGEW的review总算有了一点点影子,今年ANGEW和南开是否会出百年校庆的Special Issue呢?目前为止与南开有关的ANGEW的mini review有南开新能源所的牛志强研究员和上海有机所的游书力(http://shuliyou.sioc.ac.cn/?cat=56https://www.onlinelibrary.wiley. ... 1002/anie.201808700)研究员,游书力校友这篇ANGEW已经接受半年多都没有正式出版。。。这不合理。

化学学院牛志强研究员ANGEW的mini review,通讯作者:牛志强研究员
Angew. Chem. Int. Ed.,DOI: 10.1002/anie.201903941,Minireview,First published: 02 May 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201903941

Design Strategies of Vanadium-based Aqueous Zinc-Ion Batteries
Fang Wan and Zhiqiang Niu*

Dedicated to 100th Anniversary of Nankai University

F. Wan, Prof. Z. Niu
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, 300071, P.R. China
E-mail: zqniu nankai.edu.cn


Abstract

Aqueous zinc-ion batteries (ZIBs) are considered as the promising energy storage devices for large-scale energy storage systems due to their high safety and low cost. In recent years, various vanadium-based compounds ha-ve been widely developed to serve as the cathodes of aqueous ZIBs because of their low cost and high theoretical capacity. Furthermore, different energy storage mechanisms are observed in the ZIBs based on vanadium-based cathodes. In this minireview, we present the comprehensive overview of the energy storage mechanisms and structural features of various vanadium-based cathodes in ZIBs. Furthermore, we discuss the strategies for improving the electrochemical performance of vanadium-based cathodes, including insertion of metal ions, adjustment of structural water, selection of conductive additives and optimization of electrolytes. Finally, this minireview also offers insights regarding the potential future directions in the design of innovative vanadium-based electrode materials.

作者: NKU    时间: 2019-5-4 18:04
物理学院/泰达应用物理研究院薄方教授共同通讯作者PRL,通讯作者:Wei Fang,薄方,Ya Cheng
Phys. Rev. Lett. 122, 173903, DOI:10.1103/PhysRevLett.122.173903, Published 3 May 2019
https://journals.aps.org/prl/abs ... sRevLett.122.173903

Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator
Jintian Lin,1,* Ni Yao,2,* Zhenzhong Hao,3 Jianhao Zhang,1,5 Wenbo Mao,3 Min Wang,4 Wei Chu,1 Rongbo Wu,1,5
Zhiwei Fang,4 Lingling Qiao,1 Wei Fang,2,† Fang Bo,3,‡ and Ya Cheng1,4,5,6,§
1. State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
3. The MOE Key Laboratory of Weak Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
4. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
5. University of Chinese Academy of Sciences, Beijing 100049, China
6. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China

*These authors contributed equally to this work.
wfang08@zju.edu.cn
bofang@nankai.edu.cn
§ya.cheng@siom.ac.cn

Abstract  

We reveal a unique broadband natural quasi-phase-matching (QPM) mechanism underlying an observation of highly efficient second- and third-order harmonic generation at multiple wa velengths in an x-cut lithium niobate (LN) microdisk resonator. For light wa ves in the transverse-electric mode propagating along the circumference of the microdisk, the effective nonlinear optical coefficients naturally oscillate periodically to change both the sign and magnitude, facilitating QPM without the necessity of domain engineering in the micrometer-scale LN disk. The second-harmonic and cascaded third-harmonic wa ves are simultaneously generated with normalized conversion efficiencies as high as 9.9%/mW and 1.05%/mW2, respectively, thanks to the utilization of the highest nonlinear coefficient d33 of LN. The high efficiency achieved with the microdisk of a diameter of ∼30  μm is beneficial for realizing high-density integration of nonlinear photonic devices such as wa velength convertors and entangled photon sources.

作者: NKU    时间: 2019-5-4 18:04
元素有机化学研究所周其林课题组朱守非教授ACS Catalysis,通讯作者:朱守非
ACS Catal., Just Accepted Publication Date (Web): May 3, 2019 (Letter) DOI: 10.1021/acscatal.9b01187
https://pubs.acs.org/doi/pdf/10.1021/acscatal.9b01187


Rhodium-Catalyzed Si–H Bond Insertion Reactions Using Functionalized Alkynes as Carbene Precursors

Ming-Yao Huang,§ Ji-Min Yang,§ Yu-Tao Zhao, Shou-Fei Zhu*

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

* sfzhu nankai edu cn

§ M.-Y. Huang and J.-M. Yang contributed equally to this work.


ABSTRACT: Enantioselective transition-metal-catalyzed carbene insertion into Si–H bonds is a promising method for preparing chiral organosilicons; however, all the carbene precursors used to date in this reaction ha ve been diazo compounds, which significantly limits the structural diversity of the resulting chiral organosilicons. Herein, we report a protocol for rhodium-catalyzed asymmetric Si–H bond insertion reactions that use functionalized alkynes as carbene precursors. With chiral dirhodium tetracarboxylates as catalysts, the reactions of carbonyl-ene-ynes and silanes smoothly ga ve chiral organosilanes in high yields (up to 98%) with excellent enantioselectivity (up to 98% ee). Kinetic studies suggest that insertion of the in situ generated rhodium carbenes into the Si–H bonds of the silanes is probably the rate-determining step. This work represents the first enantioselective Si–H bond insertion reaction using alkynes as carbene precursors and opens the door for preparing chiral organosilicons with unprecedented structural diversity from readily a vailable alkynes.

KEYWORDS: Asymmetric synthesis, chiral organosilicons, rhodium carbenes, Si–H bond insertion, alkynes

作者: NKU    时间: 2019-5-12 19:47
化学学院张振杰研究员ANGEWANDTE,通讯作者:张振杰、Banglin Chen、Libo Li
Angew. Chem. Int. Ed., DOI:10.1002/anie.201904312, First published: 06 May 2019
https://onlinelibrary.wiley.com/doi/10.1002/anie.201904312

Robust Microporous Metal-Organic Frameworks for Highly Efficient and Simultaneous Removal of Propyne and Propadiene
from Propylene
Yun-Lei Peng,# [a] Chaohui He,# [c] Tony Pham,[g] Ting Wang,[a] Pengfei Li,[e] Rajamani Krishna,Katherine
A. Forrest,[g ] Adam Hogan,[g] Shanelle Suepaul,[g] Brian Space,[g] Ming Fang,[e] Yao Chen,[f] Michael J. Zaworotko,[h] Jinping Li,[c] Libo Li,* [b ], [c] Zhenjie Zhang,* [a], [d], [f] Peng Cheng,[a], [d]Banglin Chen* [b ]

[a] Y.-L. Peng, T. Wang, Prof. P. Cheng, Prof. Z. Zhang
College of Chemistry, Nankai University, Tianjin, 300071, P. R. China E-mail: zhangzhenjie nankai.edu.cn
[b ] Prof. L. Li, Prof. B. Chen
Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, United States E-mail: banglin.chen utsa.edu
[c] C. He, Prof. J. Li, Prof. L. Li
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China E-mail: lilibo908 hotmail.com,
[d] Prof. P. Cheng, Prof. Z. Zhang
Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300071, P. R. China
[e] P. Li, M. Fang
Department of Chemistry, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, Hebei, China
[f] Prof. Y. Chen, Prof. Z. Zhang
State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, P. R. China.
[g] T. Pham, K. A. Forrest, A. Hogan, S. Suepaul, Prof. B. Space
Department of Chemistry, University of South Florida, 4202 East Fowler A venue, CHE205, Tampa, Florida 33620-5250, United States.
[h] Prof. M. J. Zaworotko
Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94T9PX, Republic of Ireland.
Prof. R. Krishna
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
[#] These authors contributed equally to this work.

Abstract

Simultaneous removal of trace amount of propyne and propadiene from propylene is an important but challenging industrial process. In this study, we reported a class of microporous metal‐organic frameworks (NKMOF‐1‐M) with exceptional water stability and remarkably high uptakes for both propyne and propadiene at low pressures. Attributed to the strong bind affinity to propyne and propadiene over propylene, NKMOF‐1‐M created new benchmark selectivities for ternary propyne/propadiene/propylene (0.5/0.5/99.0) mixture, and set as a unique MOF platform to achieve both the highest selectivity and productivity of polymer‐grade propylene (99.996%) at ambient temperature, verified by both simulated and experimental breakthrough results. Moreover, we demonstrated a rare example to visualize propyne and propadiene molecules in the single‐crystal structure of NKMOF‐1‐M through a convenient approach under ambient condition, which helped to precisely understand the binding sites and affinity of propyne and propadiene. These results provide important guidance on using ultramicroporous MOFs as physisorbent materials to resolve industrial challenges related to ternary propyne/propadiene/propylene mixture separation.

作者: NKU    时间: 2019-5-12 19:47
化学学院师唯教授Chem,通讯作者:师唯,Michael J. Zaworotko
Chem, In press, corrected proof, A vailable online 6 May 2019, 10.1016/j.chempr.2019.04.010
https://www.sciencedirect.com/sc ... i/S2451929419301688

A Gadolinium(III) Zeolite-like Metal-Organic-Framework-Based Magnetic Resonance Thermometer
Shi-Yuan Zhang 12, Zhong-Yan Wang 3, Jie Gao 4, Kunyu Wang 1, Eliana Gianolio 5, Silvio Aime 5, Wei Shi 1*, Zhen Zhou 6, Peng Cheng 1, Michael J. Zaworotko 27*

1Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
2Department of Chemical Science, Bernal Institute, University of Limerick, Limerick, Republic of Ireland
3Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
4State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
5Centro di Biotechnologie Molecolari, University of Torino, Torino 10125, Italy
6School of Materials Science and Engineering, Institute of New Energy Material Chemistry, Nankai University, Tianjin 300350, China

*shiwei nankai.edu.cn

*xtal ul.ie

Summary

MRI contrast agents (CAs) feature coordinated water molecule(s) (aqua ligands), which renders them unsuitable for magnetic resonance (MR) temperature mapping because of their resulting sensitivity to metabolic and physiological changes and/or their tendency to release toxic Gd3+ cations. Herein, we introduce an approach to temperature mapping based upon a coordinatively saturated gadolinium (Gd)-based metal-organic framework (MOF) that exhibits enhanced proton relaxation and high temperature sensitivity. The stable, non-toxic Gd zeolite-like MOF Gd-ZMOF was observed to generate a large enhancement in contrast as a result of a large (70%) contribution from second-sphere water relaxivity. Temperature mapping by clinical CAs and Gd-ZMOF by means of longitudinal (T1) relaxivity was investigated. Gd-ZMOF enabled the visualization of small temperature changes, especially in the thermal therapy region (41°C–45°C). In vivo thermal imaging demonstrates the feasibility of Gd-ZMOF as an MR thermometer and as a potential theranostic.


作者: NKU    时间: 2019-5-12 19:48
环境科学与工程学院展思辉教授ADVANCED MATERIALS,通讯作者:展思辉
ADVANCED MATERIALS, DOI:10.1002/adma.201806843, First published: 10 May 2019
https://onlinelibrary.wiley.com/doi/10.1002/adma.201806843

3D Graphene-Based Macrostructures for Water Treatment
Haitao Wang, Xueyue Mi, Yi Li, and Sihui Zhan*


Abstract

Recently, 3D graphene‐based macrostructures (3D GBMs) ha ve gained increased attention due to their immense application potential in water treatment. The unique structural features (e.g., large surface area and physically interconnected porous network) as well as fascinating properties (e.g., high electrical conductivity, excellent chemical/thermal stability, ultralightness, and high solar‐to‐thermal conversion efficiency) render 3D GBMs as promising materials for water purification through adsorption, capacitive deionization, and solar distillation. Moreover, 3D GBMs can serve as scaffolds to immobilize powder nanomaterials to build monolithic adsorbents and photo‐/electrocatalysts, which significantly broadens their potential applications in water treatment. Here, recent advances in their synthesis and application toward water purification are highlighted. Remaining challenges and future perspectives are elaborated to highlight future research directions.

Prof. H. Wang, Dr. X. Mi, Prof. S. Zhan
Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Lab for Rare Earth Materials and Applications, School of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
E-mail: sihuizhan nankai.edu.cn
Prof. Y. Li
Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China

作者: NKU    时间: 2019-6-9 15:20
材料学院现在有两位中科院院士博导,双聘院士李灿和严纯华,今年各招一到两名博士生。从材料学院今年博士生招生来看,引进人才应该是最多的一年。李玉良难道是化学所的院士?南开去年实施双聘院士制度很好,学生的学缘太重要,也有利于开拓新的学科方向。
http://mse.nankai.edu.cn/_upload ... 18-dc3a939e543a.pdf


--------------------------------------------------------------------------------

材料科学与工程学院稀土中心严纯华院士团队(http://mse.nankai.edu.cn/ych/list.htm)共同通讯作者Nano Energy,通讯作者:杜亚平教授(http://dulab.nankai.edu.cn/)。该论文的第一作者+通讯作者单位为西安交通大学。
Nano Energy, DOI:10.1016/j.nanoen.2019.06.009,  A vailable online 8 June 2019
https://www.sciencedirect.com/sc ... i/S2211285519305130

Interplanar Space-controllable Carboxylate Pillared Metal Organic Framework Ultrathin Nanosheet for Superhigh Capacity Rechargeable Alkaline Battery
Junpeng Li a, c, #, §, Hongyang Zhao b, d, #, Jianwei Wang b, Na Li b, Miaomiao Wu b, Qian Zhang a, c, *, §, Yaping Du c, *
a J. Li and Prof. Q. Zhang
Department of Chemistry, Xi’an University of Technology. Xi’an, Shaanxi 710048, China.
b H. Zhao, J. Wang, N. Li and M. Wu
Frontier Institute of Science and Technology, Xi’an Jiaotong University. Xi’an, Shaanxi 710054, China.
c J. Li, Prof. Q. Zhang and Prof. Y. Du
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University. Tianjin 300350, China.
d H. Zhao
School of Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, China.
* Corresponding authors.
E-m ail address: qzh xaut.edu.cn (Q. Zhang), ypdu nankai.edu.cn (Y. Du)
# J. Li and H. Zhao contributed equally to this work.
§ J. Li and Q. Zhang are visiting scholars at Nankai University.
Keywords: metal organic framework, ultrathin nanosheets, rechargeable alkaline battery, interplanar space

Abstract
Hydroxides and their derivatives as cathode materials of rechargeable alkaline batteries ha ve limited specific capacity. In this work, a new ultrathin metal organic framework (MOF) nanosheet with expanded interplanar space is delicately designed. The organic ligand as a pillar enlarges the interplanar space for ion transportation to Ni/Co redox centers. The obtained NiCo-MOF cathode has high capacity and rate retention, specifically, 225 mAh g−1 and 82% capacity retention from 1 to 20 A g−1, which is over four-fold to that of NiCo-LDH. A full cell composed of NiCo-MOF cathode and an organic anode shows high capacity of 280 mAh g−1 with long-term cycle stability. Furthermore, we find electrochemical performance increases linearly with larger interplanar space. The present results can give new insight into structure design for advanced cathode materials and understanding the relationship between structures and performance of alkaline batteries.

Nowadays, the commercial portable energy storage devices such as lead-acid battery, lithium ion battery (LIB), and nickel-based alkaline battery are frequently used in electric vehicles [[1], [2], [3], [4], [5]]. Among them, LIB attracted the most attention due to its high energy density as well as stable energy output [6]. However, the safety issue is a severe problem, stemming from the highly flammable electrolytes [[7], [8], [9]]. Besides, highly toxic fluorine-containing gas can be generated by salt decomposition (i.e. LiPF6, LiTFSI) at high temperatures [[10], [11], [12]]. Solid state electrolyte is a promising solution to solve the safety problem [13]. However, the ionic conductivity and high cost can barely satisfy the need for commercialization in the immediate future, as well as other manufacturing issues [14,15].


Graphical abstract
Carboxylate pillared ultrathin NiCo-MOF nanosheet with large interplanar space is designed to obtain high performance cathode material for rechargeable alkaline battery. The present results show capacity and rate performance increase linearly with larger interplanar space, giving us new insight into structure design for advanced cathode materials of alkaline batteries.

作者: NKU    时间: 2019-8-10 08:21
化学学院元素有机化学研究所陈弓课题组Nature Catalysis,通讯作者:陈弓、何刚
Nature Catalysis, DOI:10.1038/s41929-019-0324-5, Published: 05 August 2019
https://www.nature.com/articles/s41929-019-0324-5

陈弓课题组主页:http://gongchenlab.com/

Palladium-catalysed C−H glycosylation for synthesis of C-aryl glycosides

Quanquan Wang, Shuang An, Zhiqiang Deng, Wanjun Zhu, Zeyi Huang, Gang He * and Gong Chen *

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, China.

*e-mail: hegang  nankai.edu.cn; gongchen  nankai.edu.cn

Abstract
C-aryl glycosides are widely found in nature and play important roles in drug design. Despite the significant progress made over the past few decades, efficient and stereoselective synthesis of complex C-aryl glycosides remains challenging, lagging far behind the state of the art of the synthesis of O- or N-glycosides. Here, we report a simple and powerful bioinspired strategy for the stereoselective synthesis of C-aryl glycosides via palladium-catalysed ortho-directed C(sp2)−H functionalization of arenes and heteroarenes with easily accessible glycosyl chloride donors. The catalytic palladacycle intermediate generated via C−H palladation provides a soft aryl nucleophile that can react with glycosyl oxocarbenium ion partners with high efficiency and excellent stereocontrol. The method can be applied to a wide range of arene and heteroarene substrates, glycosyl chloride donors and auxiliary groups. It can simplify the synthesis of a variety of complex C-aryl lycosides and offers a tool for latestage modification of drug molecules.

作者: NKU    时间: 2019-9-7 20:38
南开今年化学各二级学科发文还算是比较均衡:有机、无机、高分子、分析,以及几位物化的PI表现也很不错(如张新星、袁明鉴),新人、老人都发表了一些。不过为了以后上杰青优青,一个人一年一篇绝对是不够的,每年要两三篇J/A级别以上文章才有可能。

本周第二篇JACS上线,作者是分析化学学科的“老人”了,尹学博教授。




化学学院分析科学研究中心尹学博教授JACS,通讯作者:尹学博
J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.9b06755 • Publication Date (Web): 06 Sep 2019
https://pubs.acs.org/doi/10.1021/jacs.9b06755

Rotation Restricted Emission and Antenna Effect in Single MetalOrganic Frameworks

Hua-Qing Yin†, Xin-Yao Wang†, Xue-Bo Yin*,†

†State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular
Recognition, College of Chemistry, Nankai University, Tianjin, 300071, China
Corresponding Author
*E-mail: xbyin  nankai.edu.cn; Fax: (+86) 022-23503034

KEYWORDS:
Metal organic frameworks; Rotation restricted emission; Aggregation induced-emission; Coordination induced emission; Antenna effect

ABSTRACT:
Aggregation induced-emission (AIE) and antenna effects are important luminescence beha viors. Thus,
investigating their emission mechanisms and revealing their beha viors ha ve become critical but challenging. Here we design and prepare metal-organic frameworks (MOFs) with an AIE ligand (i.e., tetrakis(4-carboxyphenyl)pyrazine (L1)) and Ln3+ ions (including Eu3+, Tb3+, and Gd3+). The emission from L1 is gradually enhanced during the formation of the MOFs because coordination restricts the intramolecular rotation. Thus, the emission is called as coordination-induced emission (CIE) with the same restriction of intramolecular rotation mechanism as AIE. Meanwhile, benzene rings twist to adapt to the MOFs’ rigid structure, so the emission blueshifts gradually, as an additional evidence of CIE. Both AIE and CIE are “rotation-restricted emission (RRE)”. Eu3+ ions exhibit the strongest emission with gradually enhanced intensity during the formation of L1-Eu MOF. Combining with emission properties from Tb3+ and Gd3+ ions, the antenna effect is verified. We also validate the conditions for the efficient sensitization of Ln3+ ions experimentally and refresh the threshold value of the energy gap between triplet state of a ligand and excited state of Ln3+ ions to 3,000 cm-1. Thus, RRE and antenna effect are revealed and validated simultaneously. Because CIE of L1 and antenna effect emission from Eu3+ ions are enhanced simultaneously as strong dual emissions, ratiometric fluorescence detection is realized with the detection of arginine as a model. Our results incorporate AIE and CIE into RRE, which provides explicit information for the construction and application of emission systems with AIE ligands as building blocks. MOFs are also extended to explore the emission mechanism and the energy transfer between ligands and metal ions.
作者: NKU    时间: 2019-10-20 18:49
Science以研究长文形式发表了刘遵峰教授成果,南开为论文的第一作者+通讯作者单位。
Science 11 Oct 2019:,Vol. 366, Issue 6462, pp. 216-221,DOI: 10.1126/science.aax6182
https://science.sciencemag.org/content/366/6462/216

RESEARCH ARTICLE
Torsional refrigeration by twisted, coiled, and supercoiled fibers

Run Wang1,*, Shaoli Fang2,*, Yicheng Xiao1, Enlai Gao2,3, Nan Jiang2,4, Yaowang Li5, Linlin Mou1, Yanan Shen1, Wubin Zhao1, Sitong Li1, Alexandre F. Fonseca6, Douglas S. Galvão6, Mengmeng Chen1, Wenqian He1, Kaiqing Yu1, Hongbing Lu7, Xuemin Wang7,8, Dong Qian7, Ali E. Aliev2, Na Li2,9, Carter S. Haines2, Zhongsheng Liu1, Jiuke Mu2, Zhong Wang2, Shougen Yin10, Márcio D. Lima11, Baigang An12, Xiang Zhou13, Zunfeng Liu1,†, Ray H. Baughman2,†
1State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin 300071, China.
2Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75080, USA.
3Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China.
4Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
5School of Life Sciences, Tsinghua University, Beijing 100084, China.
6Applied Physics Department, State University of Campinas, Campinas, SP 13081-970, Brazil.
7Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA.
8Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458, USA.
9Materials Science, MilliporeSigma, Milwaukee, WI 53209, USA.
10Institute of Materials Physics, Tianjin University of Technology, Tianjin 300384, China.
11Nano-Science and Technology Center, Lintec of America, Richardson, TX 75081, USA.
12School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
13Department of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
↵†Corresponding author. Email: ray.baughman@utdallas.edu (R.H.B.); liuzunfeng@nankai.edu.cn (Z.L.)
↵* These authors contributed equally to this work.
作者: NKU    时间: 2019-11-9 16:05
生命科学学院丁丹研究员Advanced Materials,通讯作者:丁丹
Advanced Materials Early View First published: 07 November 2019 10.1002/adma.201904914
https://onlinelibrary.wiley.com/doi/10.1002/adma.201904914

Massively Evoking Immunogenic Cell Death by Focused Mitochondrial Oxidative Stress using an AIE Luminogen with a Twisted Molecular Structure

Chao Chen, Xiang Ni, Shaorui Jia, Yong Liang, Xiaoli Wu, Deling Kong, and Dan Ding*

C. Chen, Dr. X. Ni, S. Jia, Prof. D. Kong, Prof. D. Ding
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
E-mail: dingd nankai.edu.cn

Dr. Y. Liang
Department of Clinical Laboratory, Huai’an Hospital Affiliated to Xuzhou Medical University and Huai’an Second Hospital, Huai’an 223002, Jiangsu, China

Dr. X. Wu
School of Life Sciences, Tianjin University, Tianjin 300072, China

Prof. D. Kong, Prof. D. Ding
Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu, China

Abstract

Immunogenic cell death (ICD) provides momentous theoretical principle for modern cancer immunotherapy. However, the currently a vailable ICD inducers are still very limited and photosensitizer‐based ones can hardly induce sufficient ICD to achieve satisfactory cancer immunotherapy by themselves. Herein, an organic photosensitizer (named TPE‐DPA‐TCyP) with a twisted molecular structure, strong aggregation‐induced emission activity, and specific ability is reported for effectively inducing focused mitochondrial oxidative stress of cancer cells, which can serve as a much superior ICD inducer to the popularly used ones, including chlorin e6 (Ce6), pheophorbide A, and oxaliplatin. Furthermore, more effective in vivo ICD immunogenicity of TPE‐DPA‐TCyP than Ce6 is also demonstrated using a prophylactic tumor vaccination model. The underlying mechanism of the effectiveness and robustness of TPE‐DPA‐TCyP in inducing antitumor immunity and immune‐memory effect in vivo is verified by immune cell analyses. This study thus reveals that inducing focused mitochondrial oxidative stress is a highly effective strategy to evoke abundant and large‐scale ICD.


作者: NKU    时间: 2019-11-28 20:16
化学学院元素有机化学研究所周其林院士团队Science,通讯作者:朱守非,周其林
Science 22 Nov 2019: Vol. 366, Issue 6468, pp. 990-994 DOI: 10.1126/science.aaw9939
https://science.sciencemag.org/content/366/6468/990


Highly enantioselective carbene insertion into N–H bonds of aliphatic amines
Mao-Lin Li, Jin-Han Yu, Yi-Hao Li, Shou-Fei Zhu*, Qi-Lin Zhou*
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
*Corresponding author. Email: sfzhu@nankai.edu.cn (S.-F.Z.); qlzhou@nankai.edu.cn (Q.-L.Z.)

Abstract
Aliphatic amines strongly coordinate, and therefore easily inhibit, the activity of transition-metal catalysts, posing a marked challenge to nitrogen-hydrogen (N–H) insertion reactions. Here, we report highly enantioselective carbene insertion into N–H bonds of aliphatic amines using two catalysts in tandem: an achiral copper complex and chiral amino-thiourea. Coordination by a homoscorpionate ligand protects the copper center that activates the carbene precursor. The chiral amino-thiourea catalyst then promotes enantioselective proton transfer to generate the stereocenter of the insertion product. This reaction couples a wide variety of diazo esters and amines to produce chiral α-alkyl α–amino acid derivatives.

作者: NKU    时间: 2019-12-7 17:41
化学学院元素有机化学研究所王晓晨研究员JACS,通讯作者:王晓晨

J. Am. Chem. Soc., Just Accepted Manuscript, Publication Date (Web): 06 Dec 2019
https://pubs.acs.org/doi/10.1021/jacs.9b11909

Hydrosilylation-Promoted Furan Diels–Alder Cycloadditions with Stereoselectivity Controlled by the Silyl Group

Zhi-Yun Liu,† Ming Zhang,† and Xiao-Chen Wang*

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
†These authors contributed equally to this work.
Correspondence: xcwang@nankai.edu.cn

ABSTRACT: Herein we describe an unprecedented B(C6F5)3-catalyzed cascade reaction of N- allyl-N-furfurylamides involving an initial intramolecular furan Diels–Alder reaction and subsequent ether clea vage. The reaction has a broad substrate scope, even tolerating a trialkyl- substituted olefin as the dienophile, which has not previously been observed with conventional furan Diels–Alder reactions. In addition, the relative configuration of the product can be controlled by the choice of the silyl group: reactions involving Et3SiH and iPr3SiH ga ve different diastereomers. Control experiments and the computational studies revealed that the steric bulk of the silyl group plays a key role in determining the reaction pathway and thus the relative configuration of the product.
作者: NKU    时间: 2020-1-1 19:41
2019收官!新年快乐!




欢迎光临 国立浙江大学论坛 (http://www.ncku1897.net/forum/) Powered by Discuz! X3.2